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NORM (Dimitri Bruni, Manuel Krebs, Ludovic Varone) (2021 – 2023)

Complementing Norm’s signature 
LL Riforma family of typefaces 
from 2018, the 2024 LL Riforma 
Mono with three weights is the 
latest addendum to their type 
œuvre that now spans a quarter 
century. It brings Norm back to 
the early days when they drew 
several monospaced fonts to fit 
their ultra-normative approach 
to graphic design meticulously 
tuned to the millimeter. Still today 
the monospace genre occupies a 
special position in Norm’s uni-
verse. They consider the unified 
character width the most simple 
and versatile solution for typeset-
ting. And they cheerfully embrace 
the challenge to fill the boxes in 
the best way possible with the 
rather random shapes that history 
has brought upon us in the form of 
Latin letters.
 LL Riforma was predestined 
for a Mono fit, given its geometric 
construction and its slightly boxy 
shapes owed to a relatively large 
x-height. Many letters offered 
themselves to convenient squeez-
ing into the boxes, while others 
provided sufficient options to 
expand on the playful undertones 
of this highly regulated typeface. 
The confidently prolonged serifs 
and crossbars present variations 
on some of the distinct strokes of 

LL Riforma, while the pronounced 
sharpness of the original shapes 
gives way to a slightly softer 
overall appearance. All the while 
the Mono styles preserve with 
grandezza the two outstanding 
qualities of their predecessor: 
a graphic appearance in large 
applications as well as excellent 
readability in smaller sizes.
 To underscore the mono-
space dogma, LL Riforma is 
equipped with the full sets of 
Unicode-approved box-drawing 
characters and block elements. 
Both sets originated in the era of 
early digital fonts, when various 
kinds of lines and square-shapes 
were displayed and printed with 
the help of these semigraph-
ics in lack of better options. The 
approach became redundant once 
PostScript technology enabled the 
integration of text and drawings 
(as well as any other kind of imag-
ery), and in the age of AI the long-
discarded semigraphics might 
remind us that typography was 
once a craft of the human hand.

Riforma Mono Light
Riforma Mono Light Italic
Riforma Mono Regular
Riforma Mono Italic
Riforma Mono Bold
Riforma Mono Bold Italic

General inquiries: 
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support@lineto.com 
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sales@lineto.com

Lineto GmbH 
Lutherstrasse 32 
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1.1.2011 1.1.2011 
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2 7/8 2 7⁄� 
6 2/5 × 9 4/5 6 2⁄� × 9 4⁄� 
34 1/6 ÷ 7 1/7 34 1⁄� ÷ 7 1⁄� 
90 2/3 90 2⁄� 
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H2O H₂O 

1a 1ª 
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Nebenstrasse Nebenstraße
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When visualizing complex functions, 
both a complex input and output  
are needed. Because each complex 
number is represented in two dimen-
sions, visually graphing a complex 
function would require the percep-
tion of a four dimensional space, 
which is possible only in projec-
tions. Because of this, other ways 
of visualizing complex functions 
have been designed. In domain color-
ing the output dimensions are  
REPRESENTED BY COLOR AND BRIGHTNESS, 
RESPECTIVELY. EACH POINT IN THE  
COMPLEX PLANE AS DOMAIN IS ORNATED, 
TYPICALLY WITH COLOR REPRESENTING 

the argument of the complex number, 
and brightness representing the  
magnitude. Dark spots mark moduli 
near zero, brighter spots are far-
ther away from the origin, the gra-
dation may be discontinuous, but  
is assumed as monotonous. The colors 
often vary in steps of π/3 for 0  
to 2π from red, yellow, green, cyan, 
blue, to magenta. These plots are 
called color wheel graphs. This pro-
vides a simple way to visualize  
THE FUNCTIONS WITHOUT LOSING INFOR-
MATION. THE PICTURE SHOWS ZEROS  
FOR ±1, (2+I) AND POLES AT ± −2−2I. 
THE SOLUTION IN RADICALS ric 

A complex number z can thus be identified 
with an ordered pair (R(z), I(z)) of real 
numbers, which in turn may be interpreted 
as coordinates of a point in a two-dimen-
sional space. The most immediate space is 
the Euclidean plane with suitable coordi-
nates, which is then called complex plane 
or Argand diagram, named after Jean-Robert 
Argand. Another prominent space on which 
the coordinates may be projected is the 
two-dimensional surface of a sphere, which 
is then called Riemann sphere. The defini-
TION OF THE COMPLEX NUMBERS INVOLVING TWO 
ARBITRARY REAL VALUES IMMEDIATELY SUGGESTS 
THE USE OF CARTESIAN COORDINATES IN THE 

In mathematics, a complex num-

ber is an element of a number 

system that extends the real 

numbers with a specific element 

denoted i, called the imagi-

nary unit and satisfying the 

equation i²=−1; every complex 

number can be expressed in  

the form a+bi, where a and b 

are real numbers. Because  

no real number satisfies the 

above equation, i was called 

an imaginary number by René 

Descartes. For the complex 

number a + bi, a is called the 

real part, and b is called  

THE IMAGINARY PART. THE SET  

OF COMPLEX NUMBERS IS DENOTED 

BY EITHER OF THE SYMBOLS C 

OR C. DESPITE THE HISTORI-

CAL NOMENCLATURE “IMAGINARY”, 

complex numbers are regarded 

in the mathematical sciences 

as just as “real” as the real 

numbers and are fundamental  

in many aspects of the sci-

entific description of the 

natural world. Complex numbers 

allow solutions to all poly-

nomial equations, even those 

that have no solutions in real 

numbers. More precisely, the 

fundamental theorem of algebra 

asserts that every non-constant 

polynomial equation with real 

or complex coefficients has  

a solution which is a complex 

NUMBER. FOR EXAMPLE, THE  

EQUATION (X+1)²=−9 HAS NO REAL 

SOLUTION, SINCE THE SQUARE  

OF A REAL NUMBER CANNOT BE NEG- 

ATIVE, BUT HAS THE TWO NON- 

real complex solutions and 

Addition, subtraction and mul-

tiplication of complex numbers 

can be naturally defined by 

using the rule i²=−1 combined 

with the associative, commu-

tative, and distributive laws. 

Every non-zero complex number 

has a multiplicative inverse. 

This makes the complex numbers 

a field that has the real num-

bers as a subfield. The com- 

plex numbers also form a real 

vector space of dimension  

two, with {1, i} as a standard 

basis. This standard basis 

MAKES THE COMPLEX NUMBERS  

A CARTESIAN PLANE, CALLED THE 

COMPLEX PLANE. THIS ALLOWS  

A GEOMETRIC INTERPRETATION OF 

THE COMPLEX NUMBERS AND THEIR 

For example, the real numbers form the real line which is iden-

tified to the horizontal axis of the complex plane. The complex 

numbers of absolute value one form the unit circle. The addi-

tion of a complex number is a translation in the complex plane, 

and the multiplication by a complex number is a similarity cen-

tered at the origin. The complex conjugation is the reflection 

symmetry with respect to the real axis. The complex absolute 

value is a Euclidean norm. In summary, the complex numbers form 

a rich structure that is simultaneously an algebraically closed 

field, a commutative algebra over the reals, and a Euclidean 

VECTOR SPACE OF DIMENSION TWO. A COMPLEX NUMBER IS A NUMBER OF 

THE FORM A+BI, WHERE A AND B ARE REAL NUMBERS, AND I IS AN 

INDETERMINATE SATISFYING I²=−1. FOR EXAMPLE, 2+ I IS A COMPLEX 

A real number a can be regarded as a complex num-

ber a+0i, whose imaginary part is 0. A purely  

imaginary number bi is a complex number 0+bi, 

whose real part is zero. As with polynomials, it 

is common to write a for a + 0i and bi for 0+bi. 

Moreover, when the imaginary part is negative, 

that is, b=−|b|<0, it is common to write a−|b|i 

instead of a + (−|b|)i; for example, for b=−4,  

3−4i can be written instead of 3+(−4)i. Since  

the multiplication of the indeterminate i and a 

real is commutative in polynomials with real  

coefficients, the polynomial a + bi may be written  

AS A+IB. THIS IS OFTEN EXPEDIENT FOR IMAGINARY 

PARTS DENOTED BY EXPRESSIONS, FOR EXAMPLE, WHEN B 

IS A RADICAL. THE SET OF ALL COMPLEX NUMBERS  

IS DENOTED BY C (BLACKBOARD BOLD) OR C (UPRIGHT 

LL Riforma Mono Light
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12 Points
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     Titling
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32 Points

◓ The solution in radicals of a gene-
ral cubic equation, when all three of 
its roots are real numbers, contains 
the square roots of negative numbers, 
a situation that cannot be rectified 
by factoring aided by the rational 
root test, if the cubic is irreduci-
ble; this is the so-called casus 
irreducibilis (“irreducible case”). 
THIS CONUNDRUM LED ITALIAN MATHEMATI-
CIAN GEROLAMO CARDANO TO CONCEIVE  
OF COMPLEX NUMBERS IN AROUND 1545 IN 
HIS ARS MAGNA, THOUGH HIS UNDERS- 

Algebraic form
Complex exponential 
Contour integral
Euler’s Identity Proof
Exponential
Fractal geometry
Holomorphic
Imaginary axis
LAPLACE TRANSFORM
LOGARITHM
MEROMORPHIC FUNCTION

N-th Root • (−3)²=9
Opposite of complex
Polar coordinates
Principal argument
Quaternions, 1843
Reel Axis [i[z]=0]
Riemann fonction
SÉRIES DE FOURIER
SQUARE ROOT • Y²=X

Tangent n+1/2
Unit Lenght
Vertical Axis
Wiener-Khinchin
x=0 √1+x
ZETA FUNCTION

LL Riforma Mono Light
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   1+2i       −3−4i       5+6i       −7−8i       9+10i     −11−12i     13+14i     −15−16i    
  17+18i     −19−20i     21+22i     −23−24i     25+26i     −27−28i     29+30i     −31−32i       
  33+34i     −35−36i     37+38i     −39−40i     41+42i     −43−44i     45+46i     −47−48i     
  49+50i     −51−52i     53+54i     −55−56i     57+58i     −59−60i     61+62i     −63−64i     
  65+66i     −67−68i     69+70i     −71−72i     73+74i     −75−76i     77+78i     −79−80i     
  81+82i     −83−84i     85+86i     −87−88i     89+90i     −91−92i     93+94i     −95−96i     
  97+98     −99−100i   101+102i   −103−104i   105+106i   −107−108i   109+110i   −111−112i    
113+114i   −115−116i   117+118i   −119−120i   121+122i   −123−124i   125+126i   −127−128i    
129+130i   −131−132i   133+134i   −135−136i   137+138i   −139−140i   141+142i   −143−144i    
145+146i   −147−148i   149+150i   −151−152i   153+154i   −155−156i   157+158i   −159−160i    
161+162i   −163−164i   165+166i   −167−168i   169+170i   −171−172i   173+174i   −175−176i    
177+178i   −179−180i   181+182i   −183−184i   185+186i   −187−188i   189+190i   −191−192i    
193+194i   −195−196i   197+198i   −199−200i   201+202i   −203−204i   205+206i   −207−208i    
209+210i   −211−212i   213+214i   −215−216i   217+218i   −219−220i   221+222i   −223−224i    
225+226i   −227−228i   229+230i   −231−232i   233+234i   −235−236i   237+238i   −239−240i    
241+242i   −243−244i   245+246i   −247−248i   249+250i   −251−252i   253+254i   −255−256i    
257+258i   −259−260i   261+262i   −263−264i   265+266i   −267−268i   269+270i   −271−272i    
273+274i   −275−276i   277+278i   −279−280i   281+282i   −283−284i   285+286i   −287−288i    
289+290i   −291−292i   293+294i   −295−296i   297+298i   −299−300i   301+302i   −303−304i    
305+306i   −307−308i   309+310i   −311−312i   313+314i   −315−316i   317+318i   −319−320i    
321+322i   −323−324i   325+326i   −327−328i   329+330i   −331−332i   333+334i   −335−336i    
337+338i   −339−340i   341+342i   −343−344i   345+346i   −347−348i   349+350i   −351−352i    
353+354i   −355−356i   357+358i   −359−360i   361+362i   −363−364i   365+366i   −367−368i    
369+370i   −371−372i   373+374i   −375−376i   377+378i   −379−380i   381+382i   −383−384i    
385+386i   −387−388i   389+390i   −391−392i   393+394i   −395−396i   397+398i   −399−400i    
401+402i   −403−404i   405+406i   −407−408i   409+410i   −411−412i   413+414i   −415−416i    
417+418i   −419−420i   421+422i   −423−424i   425+426i   −427−428i   429+430i   −431−432i    
433+434i   −435−436i   437+438i   −439−440i   441+442i   −443−444i   445+446i   ... 

LL Riforma Mono Light
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The most familiar numbers are the 
natural numbers (sometimes called 
whole numbers or counting numbers): 
1, 2, 3, and so on. Traditionally, 
the sequence of natural numbers 
started with 1 (0 was not even con-
sidered a number for the Ancient 
Greeks.) However, in the 19th cen-
tury, set theorists and other  
mathematicians started including  
0 (cardinality of the empty set,  
0 elements, where 0 is thus  
THE SMALLEST CARDINAL NUMBER) IN 
THE SET OF NATURAL NUMBERS. TODAY,  
DIFFERENT MATHEMATICIANS USE THE 
TERM TO DESCRIBE BOTH SETS, INCLU- 

ding 0 or not. The mathematical 
symbol for the set of all natural 
numbers is N, also written N  
and sometimes N₀ or N₁ when it is 
necessary to indicate whether  
the set should start with 0 or 1, 
respectively. In the base 10  
numeral system, in almost universal 
use today for mathematical ope-
rations, the symbols for natural 
numbers are written using ten  
digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 
AND 9. THE RADIX OR BASE IS THE 
NUMBER OF UNIQUE NUMERICAL DIGITS, 
INCLUDING ZERO, THAT A NUMERAL  
SYSTEM USES TO REPRESENT NUMBERS 

The study of functions of a complex  
variable is known as complex analysis and  
has enormous practical use in applied 
mathematics as well as in other branches 
of mathematics. Often, the most natu- 
ral proofs for statements in real analysis 
or even number theory employ techniques 
from complex analysis (see prime number 
theorem for an example). Unlike real func-
tions, which are commonly represented  
as two-dimensional graphs, complex func-
tions have four-dimensional graphs and  
MAY USEFULLY BE ILLUSTRATED BY COLOR-COD-
ING A THREE-DIMENSIONAL GRAPH TO SUGGEST 
FOUR DIMENSIONS, OR BY ANIMATING THE 

The symbol for the real  

numbers is R. They include all 

the measuring numbers. Every 

real number corresponds to  

a point on the number line.  

The following paragraph will  

focus primarily on positive 

real numbers. The treatment  

of negative real numbers is 

according to the general  

rules of arithmetic and their  

denotation is simply prefi-

xing the corresponding posi- 

tive numeral by a minus sign, 

−123.456. Most real numbers  

can only be approximated  

BY DECIMAL NUMERALS, IN WHICH  

A DECIMAL POINT IS PLACED  

TO THE RIGHT OF THE DIGIT WITH 

PLACE VALUE 1. EACH DIGIT TO 

THE RIGHT OF THE DECIMAL POINT 

has a place value one-tenth of 

the place value of the digit 

to its left. For example, 

123.456 represents 123456/1000, 

or, in words, one hundred, two 

tens, three ones, four tenths,  

five hundredths, and six thou- 

sandths. A real number can  

be expressed by a finite num-

ber of decimal digits only  

if it is rational and its 

fractional part has a denomina- 

tor whose prime factors are  

2 or 5 or both, because these  

are the prime factors of 10, 

the base of the decimal sys-

TEM. THUS, FOR EXAMPLE, ONE 

HALF IS 0.5, ONE FIFTH IS 0.2, 

ONE-TENTH IS 0.1, AND ONE FIF-

TIETH IS 0.02. REPRESENTING 

OTHER REAL NUMBERS AS DECIMALS 

would require an infinite 

sequence of digits to the 

right of the decimal point.  

If this infinite sequence  

of digits follows a pattern, 

it can be written with an 

ellipsis or another notation 

that indicates the repea- 

ting pattern. Such a decimal  

is called a repeating decimal. 

Thus 1/3 can be written as 

0.333…, with an ellipsis to 

indicate that the pattern  

continues. Forever repeating  

3s are also written as 0.3.  

It turns out that these repea-

TING DECIMALS DENOTE EXACTLY 

THE RATIONAL NUMBERS, ALL 

RATIONAL NUMBERS ARE ALSO REAL 

NUMBERS, BUT IT IS NOT THE 

CASE THAT EVERY REAL NUMBER IS  

The negative of a positive integer is defined as a number that 

produces 0 when it is added to the corresponding positive  

integer. Negative numbers are usually written with a negative 

sign (a minus sign). As an example, the negative of 7 is  

written −7, and 7+(−7)=0. When the set of negative numbers  

is combined with the set of natural numbers (including 0),  

the result is defined as the set of integers, Z also written Z. 

Here the letter Z comes from German Zahl ‘number’. The set  

of integers forms a ring with the operations addition and mul-

tiplication. The natural numbers form a subset of the integers. 

AS THERE IS NO COMMON STANDARD FOR THE INCLUSION OR NOT OF  

ZERO IN THE NATURAL NUMBERS, THE NATURAL NUMBERS WITHOUT ZERO 

ARE COMMONLY REFERRED TO AS POSITIVE INTEGERS, AND THE NATURAL 

The notions of convergent series and continuous 

functions in (real) analysis have natural analogs 

in complex analysis. A sequence of complex num-

bers is said to converge if and only if its real 

and imaginary parts do. This is equivalent to  

the definition of limits, where the absolute value 

of real numbers is replaced by the one of com- 

plex numbers. From a more abstract point of view, 

C, endowed with the metric d(z₁,z₂)=|z₁−z₂| is  

a complete metric space, which notably includes 

the triangle inequality |z₁+z₂|≤|z₁|+|z₂| for  

any two complex numbers z₁ and z₂. Like in real 

analysis, this notion of convergence is used  

TO CONSTRUCT A NUMBER OF ELEMENTARY FUNCTIONS:  

THE EXPONENTIAL FUNCTION EXP Z, ALSO WRITTEN EZ, 

IS DEFINED AS THE INFINITE SERIES. THE SERIES  
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● Moreover he later described complex 
numbers as “as subtle as they are 
useless.” Cardano did use imaginary 
numbers, but described using them  
as “mental torture.” This was prior 
to the use of the graphical complex 
plane. Cardano and other Italian  
mathematicians, notably Scipione del 
Ferro, in the 1500s created an algo-
RITHM FOR SOLVING CUBIC EQUATIONS 
WHICH GENERALLY HAD ONE REAL SOLUTION 
AND TWO SOLUTIONS CONTAINING AN IMA-
GINARY NUMBER. SINCE THEY IGNORED THE 

Arithmetic mean
Binary, Coefficients
Congruence
Diophantine equation
Elliptic curve
Fermat’s Last Theorem
Golden ratio
Greatest common divisor
HARSHAD NUMBER
INTEGER, LUCAS NUMBER
LENGTHS [A] AND [B]

Ⅰ Mersenne prime
Ⅱ Non-terminating 
Ⅲ Odd number → 543
Ⅳ Pi(π) → 3.14159265…
Ⅴ Pythagorean triple
Ⅵ Quotient Graph
Ⅶ Repeating decimal
Ⅷ SEMIPRIME/BIPRIMES
Ⅸ SQUARE-FREE [S²|R]

Transcendental
Ulam spiral
Unnatural 
Wilson prime
Zermelo-
FRAENKEL THEORY
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╭──┤COMPLEX├────────────────────────────────────┤A├────────────────────────────────────────────────╮
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│  ╭━━┥IMAGINARY┝━━╮ ╭━━┥REAL┝━━━━━━━━━━━━━━━━━━┥B.2┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮  │
│  ┃               ┃ ┃                                                                          ┃  │
├┈┈┫               ┃ ┃                                                                          ┣┈┈┤
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┣┈┈┤
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ┃               ┃ ┃                                                                          ┃  │
│  ╰━━┥B.1┝━━━━━━━━╯ ╰━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╯  │
│                                                                                                  │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯

   i  − 2i
  3i  − 4i
  5i  − 6i
  7i  − 8i
  9i  −10i
 11i  −12i
 13i  −14i
 15i  −16i
 17i  −18i
 19i  −20i
 21i  −22i
 23i  −24i
 25i  −26i
 27i  −28i
 29i  −30i
 31i  −32i
 33i  −34i
 35i  −36i
 37i  −38i
 39i  −40i
 41i  −42i
 43i  ...
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Moving to a greater level of abs-
traction, the real numbers can  
be extended to the complex numbers. 
This set of numbers arose histo-
rically from trying to find closed 
formulas for the roots of cubic  
and quadratic polynomials. This led 
to expressions involving the square 
roots of negative numbers, and 
eventually to the definition of a 
new number: a square root of −1, 
denoted by i, a symbol assigned by 
LEONHARD EULER, AND CALLED THE 
IMAGINARY UNIT. THE COMPLEX NUMBERS 
CONSIST OF ALL NUMBERS OF THE  
FORM A+BI WHERE A AND B ARE REAL 

numbers. Because of this, complex 
numbers correspond to points on  
the complex plane, a vector space 
of two real dimensions. In the 
expression a + bi, the real number 
a is called the real part and  
b is called the imaginary part.  
If the real part of a complex num-
ber is 0, then the number is  
called an imaginary number or is 
referred to as purely imaginary;  
if the imaginary part is 0,  
THEN THE NUMBER IS A REAL NUMBER. 
THUS THE REAL NUMBERS ARE A SUB- 
SET OF THE COMPLEX NUMBERS. IF THE 
REAL AND IMAGINARY PARTS OF A COM- 

The first number to be proven trans- 
cendental without having been specifically 
constructed for the purpose of proving 
transcendental numbers’ existence was e, 
by Charles Hermite in 1873. In 1874,  
Georg Cantor proved that the algebraic 
numbers are countable and the real numbers 
are uncountable. He also gave a new  
method for constructing transcendental 
numbers. Although this was already implied 
by his proof of the countability of the 
algebraic numbers, Cantor also published  
A CONSTRUCTION THAT PROVES THERE ARE  
AS MANY TRANSCENDENTAL NUMBERS AS THERE  
ARE REAL NUMBERS. CANTOR’S WORK SET THE 

Joseph Liouville first proved 

the existence of transcen- 

dental numbers in 1844,and in 

1851 gave the first decimal 

examples such as the Liouville 

constant in which the nth 

digit after the decimal point 

is 1 if n is equal to k!  

for some k and 0 otherwise.  

In other words, the nth  

digit of this number is 1 only 

if n is one of the numbers 

1!=1, 2!=2, 3!=6, 4!=24, etc. 

Liouville showed that this 

number belongs to a class of 

transcendental numbers that 

CAN BE MORE CLOSELY APPRO-

XIMATED BY RATIONAL NUMBERS 

THAN CAN ANY IRRATIONAL ALGE-

BRAIC NUMBER, AND THIS CLASS 

OF NUMBERS ARE CALLED LIOU- 

ville numbers, named in his 

honour. Liouville showed  

that all Liouville numbers are 

transcen-dental. The first 

number to be proven transcen-

dental without having been 

specifically constructed for 

the purpose of proving tran-

scendental numbers’ existence 

was e, by Charles Hermite  

in 1873. In 1874, Georg Cantor 

proved that the algebraic  

numbers are countable and the 

real numbers are uncountable. 

He also gave a new method  

for constructing transcenden-

TAL NUMBERS. ALTHOUGH THIS  

WAS ALREADY IMPLIED BY HIS 

PROOF OF THE COUNTABILITY OF 

THE ALGEBRAIC NUMBERS, CANTOR 

ALSO PUBLISHED A CONSTRUCTION 

that proves there are as many 

transcendental numbers as 

there are real numbers. Can-

tor’s work established the 

ubiquity of transcendental 

numbers. In 1882, Ferdinand 

von Lindemann published the 

first complete proof that  

π is transcendental. He first 

pro-ved that ea is trans- 

cendental if a is a non-zero 

algebraic number. Then,  

since eiπ=−1 is alge-braic 

(see Euler’s identity),  

iπ must be transcendental.  

But since i is algebraic,  

∏ THEREFORE MUST BE TRANSCEN-

DENTAL. THIS APPROACH WAS  

GENERALIZED BY KARL WEIER-

STRASS TO WHAT IS NOW KNOWN  

AS THE LINDEMANN–WEIERSTRASS 

A computable number, also known as recursive number,  

is a real number such that there exists an algorithm which, 

given a positive number n as input, produces the first  

n digits of the computable number’s decimal representation. 

Equivalent definitions can be given using μ-recursive  

functions, Turing machines or calculus. The computable num- 

bers are stable for all usual arithmetic operations,  

including the computation of the roots of a polynomial, and 

thus form a real closed field that contains the real  

algebraic numbers. The computable numbers may be viewed as  

THE REAL NUMBERS THAT MAY BE EXACTLY REPRESENTED IN A  

COMPUTER: A COMPUTABLE NUMBER IS EXACTLY REPRESENTED BY ITS 

FIRST DIGITS AND A PROGRAM FOR COMPUTING FURTHER DIGITS. 

However, an algebraic function of several  

variables may yield an algebraic number when  

applied to transcendental numbers if these  

numbers are not algebraically independent.  

For example, π and (1−π) are both transcenden- 

tal, but π+(1−π)=1 is obviously not. It is  

unknown whether e+π, for example, is trans- 

cendental, though at least one of e+π and eπ  

must be transcendental. More generally,  

for any two transcendental numbers a and b,  

at least one of a+b and ab must be trans- 

cendental. To see this, consider the polynomial 

(x−a)(x−b)=x²−(A+B)X+AB. IF (A+B) AND A B  

WERE BOTH ALGEBRAIC, THEN THIS WOULD BE A POLY- 

NOMIAL WITH ALGEBRAIC COEFFICIENTS. BECAUSE  

ALGEBRAIC NUMBERS FORM AN ALGEBRAICALLY CLOSED 
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◧ Work on the problem of general 
polynomials ultimately led to  
the funda-mental theorem of algebra, 
which shows that with complex  
numbers, a solution exists to every 
polynomial equation of degree  
one or higher. Complex numbers thus 
form an algebraically closed  
field, where any polynomial equation 
HAS A ROOT. MANY MATHEMATICIANS  
CONTRIBUTED TO THE DEVELOPMENT OF 
COMPLEX NUMBERS. THE RULES FOR ADDI-
TION, SUBTRACTION, MULTIPLICATION, 

A. Absolute value
   Amicable numbers
B. Base 02 (Binary) 
   Base 08 (Octal)
   Base 16 (Hexadecimal)
C. Combinatorial 
   Cycle Lemma
E. Extraction
   EUGÈNE CHARLES CATALAN
G. GEOMETRIC PROGRESSION
I. IDENTITY MATRIX

Lateral surface
Matrix disambiguation
Multiplication
Modular Arithmetic
Negative Expo
Orthocenter h²=pq
Prime factor
QUADRATIC EQUATION
QUARTILE (Q1)

Recursively 
Defined Object
Sequences
Subtraction  
Property  
OF EQUALITY
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╭──┤COMPLEX├────────────────────────────────────┤A├────────────────────────────────────────────────╮
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│  ╭──┤IMAGINARY├──╮ ╭──┤REAL├──────────────────┤B.2├───────────────────────────────────────────╮  │
│  │               │ │                                                                          │  │
├┈┈┤               │ │                                                                          ├┈┈┤
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭━━┥IRRATIONAL┝━━━━━━━━━━┥C.1┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┣┈┈┤  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ╰━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╯  │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭━━┥RATIONAL┝━━━━━━━━━━━━┥C.2┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┣┈┈┤  │ 
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │ 
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │ 
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ┃                                                                     ┃  │  │
│  │               │ │ ╰━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╯  │  │
│  ╰──┤B.1├────────╯ ╰──────────────────────────────────────────────────────────────────────────╯  │
│                                                                                                  │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯

√2    =  1.41421356237309504880168872420969807856967187537694...
e     =  2.71828182845904523536028747135266249775724709369995...

1/2   =  0.5
3/8   =  0.375
2/9   = −0.222222...
5/6   =  0.833333333333...
9/11  = −0.818181818181818181818181...
23/17 =  1.352941176470588235294117647058823529...
1/98  =  0.01020408163265306122448979591836734693877551020408...
         1632653061224489795918367346938775510204081632653061... 
         2244897959183673469387755102040816326530

−
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A natural number can be used  
to express the size of a finite set; 
more precisely, a cardinal number  
is a measure for the size of a set, 
which is even suitable for infi- 
nite sets. This concept of “size” 
relies on maps between sets, such 
that two sets have the same size, 
exactly if there exists a bijection 
between them. The set of natural 
numbers itself, and any bijective 
image of it, is said to be count-
ABLY INFINITE AND TO HAVE CARDINAL-
ITY ALEPH-NULL. NATURAL NUMBERS  
ARE ALSO USED AS LINGUISTIC ORDINAL 
NUMBERS: “FIRST”, “SECOND”,  

“third”, and so forth. This way  
they can be assigned to the elements 
of a totally ordered finite set,  
and also to the elements of any 
well-ordered countably infinite set. 
This assignment can be generali- 
zed to general well-orderings with  
a cardinality beyond countability, 
to yield the ordinal numbers.  
An ordinal number may also be used 
to describe the notion of “size”  
for a well-ordered set, in a sense 
DIFFERENT FROM CARDINALITY: IF THERE 
IS AN ORDER ISOMORPHISM (MORE  
THAN A BIJECTION) BETWEEN TWO WELL-
ORDERED SETS, THEY HAVE THE SAME 

It can be checked that the natural numbers 
satisfies the Peano axioms. With this  
definition, given a natural number n, the 
sentence “a set S has n elements” can  
be formally defined as “there exists a 
bijection from n to S. This formalizes the 
operation of counting the elements of S. 
Also, n≤m if and only if n is a subset  
of m. In other words, the set inclusion 
defines the usual total order on the natu-
ral numbers. This order is a well-order. 
It follows from the definition that each 
NATURAL NUMBER IS EQUAL TO THE SET OF ALL 
NATURAL NUMBERS LESS THAN IT. THIS DEFI-
NITION, CAN BE EXTENDED TO THE VON NEUMANN 

A transcendental number  

is a (possibly complex) number 

that is not the root of any  

integer polynomial. Every real 

transcendental number must  

also be irrational, since  

a rational number is the root 

of an integer polynomial of  

degree one. The set of tran-

scendental numbers is uncount-

ably infinite. Since the  

polynomials with rational 

coef-icients are countable,  

and since each such polynomial 

has a finite number of zeroes,  

the algebraic numbers must 

ALSO BE COUNTABLE. HOWEVER, 

CANTOR’S DIAGONAL ARGUMENT 

PROVES THAT THE REAL NUMBERS 

(AND THEREFORE ALSO THE COM-

PLEX NUMBERS) ARE UNCOUNTABLE. 

Since the real numbers are  

the union of algebraic  

and transcendental numbers,  

it is impossible for both  

subsets to be countable.  

This makes the transcendental 

numbers uncountable. A tran-

scendental number is a number 

that is not the root of any 

integer polynomial. Every real 

transcendental number must  

also be irrational, since a 

rational number is the root of 

an integer polynomial of 

degree one.The set of tran-

scendental numbers is uncount-

ABLY INFINITE. SINCE THE POLY- 

NOMIALS WITH RATIONAL COEFFI-

CIENTS ARE COUNTABLE, AND 

SINCE EACH SUCH POLYNOMIAL HAS 

A FINITE NUMBER OF ZEROES,  

the algebraic numbers must 

also be countable. However, 

Cantor’s diagonal argument 

proves that the real numbers 

(and therefore also the com-

plex numbers) are uncoun-

table. Since the real numbers 

are the union of algebraic  

and transcendental numbers,  

it is impossible for both sub-

sets to be countable. This 

makes the transcendental num-

bers uncountable. No ratio- 

nal number is transcendental 

and all real transcendental 

numbers are irrational. The 

IRRATIONAL NUMBERS CONTAIN ALL 

THE REAL TRANSCENDENTAL NUM-

BERS AND A SUBSET OF THE ALGE-

BRAIC NUMBERS, INCLUDING  

THE QUADRATIC IRRATIONALS AND 

There are two standard methods for formally defining natural 

numbers. The first one, named for Giuseppe Peano, consists  

of an autonomous axiomatic theory called Peano arithmetic, 

based on few axioms called Peano axioms. The second definition 

is based on set theory. It defines the natural numbers as  

specific sets. More precisely, each natural number n is defined 

as an explicitly defined set, whose elements allow counting  

the elements of other sets, in the sense that the sentence  

“a set S has n elements” means that there exists a one to one 

correspondence between the two sets n and S. The sets used  

TO DEFINE NATURAL NUMBERS SATISFY PEANO AXIOMS. IT FOLLOWS THAT 

EVERY THEOREM THAT CAN BE STATED AND PROVED IN PEANO ARITH-

METIC CAN ALSO BE PROVED IN SET THEORY. HOWEVER, THE TWO DEFI- 

Intuitively, the natural number n is the common 

property of all sets that have n elements.  

So, it seems natural to define n as an equivalence 

class under the relation “can be made in one  

to one correspondence”. Unfortunately, this does 

not work in set theory, as such an equivalence 

class would not be a set. The standard solution  

is to define a particular set with n elements  

that will be called the natural number n. The fol-

lowing definition was first published by John  

von Neumann,although Levy attributes the idea to 

unpublished work of Zermelo in 1916. As this  

DEFINITION EXTENDS TO INFINITE SET AS A DEFINI-

TION OF ORDINAL NUMBER, THE SETS CONSIDERED  

BELOW ARE SOMETIMES CALLED VON NEUMANN ORDINALS. 

THE DEFINITION PROCEEDS AS FOLLOWS: CALL THE  
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◔ The impetus to study complex num-
bers as a topic in itself first arose 
in the 16th century when algebraic 
solutions for the roots of cubic and 
quartic polynomials were discovered 
by Italian mathematicians (Niccolò 
Fontana Tartaglia and Gerolamo 
Cardano). It was soon realized (but 
proved much later)that these formu-
las, EVEN IF ONE WERE INTERESTED ONLY  
IN REAL SOLUTIONS, SOMETIMES REQUI-
RED THE MANIPULATION OF SQUARE ROOTS  
OF NEGATIVE NUMBERS. IN FACT, IT WAS 

1. Additive inverse
2. Asymptotic
3. Calculus
4. Complex, Conjugate
5. De Moivre’s theory
6. Fondamental
7. Generated function
8. Geometric Root
9. HOOK-LENGTH
10.IMAGINARY UNIT
11.INEQUALITY

Mandelbrot Fractal
Null set (Empty ⌀)
Prime Factorization 
Theorem Proofing
Power Series d₀=a₀/b₀
Quadratic equations
Repeating decimal
RHOMBUS QUADRILATERAL
STATISTICAL MEDIAN

Uncoutable Set
Unique Factor 
Factorization
Wilson prime
Whole Unit
ZERO-CROSSING
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╭──┤COMPLEX├────────────────────────────────────┤A├────────────────────────────────────────────────╮
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│  ╭──┤IMAGINARY├──╮ ╭──┤REAL├──────────────────┤B.2├───────────────────────────────────────────╮  │
│  │               │ │                                                                          │  │
├┈┈┤               │ │                                                                          ├┈┈┤
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭──┤IRRATIONAL├──────────┤C.1├────────────────────────────────────────╮  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     ├┈┈┤  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ ╰─────────────────────────────────────────────────────────────────────╯  │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭──┤RATIONAL├────────────┤C.2├────────────────────────────────────────╮  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     ├┈┈┤  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │ ╭━━┥INTEGER┝━━━━━━━━━━━┥D┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┣┈┈┤  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ┃                                                                ┃  │  │  │
│  │               │ │ │ ╰━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╯  │  │  │
│  │               │ │ ╰─────────────────────────────────────────────────────────────────────╯  │  │
│  ╰──┤B.1├────────╯ ╰──────────────────────────────────────────────────────────────────────────╯  │
│                                                                                                  │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
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In mathematics, a real number is  
a number that can be used to meas-
ure a continuous one-dimensional 
quantity such as a distance, dura-
tion or temperature. Here, continu-
ous means that pairs of values can 
have arbitrarily small differences. 
Every real number can be almost 
uniquely represented by an infinite 
decimal expansion. The real num-
bers are fundamental in calculus, 
in particular by their role in the 
CLASSICAL DEFINITIONS OF LIMITS, 
CONTINUITY AND DERIVATIVES. THE SET 
OF REAL NUMBERS IS DENOTED R AND  
IS SOMETIMES CALLED “THE REALS”. 

The adjective real, used in  
the 17th century by René Descartes, 
distinguishes real numbers from 
imaginary numbers such as the 
square roots of −1. The real num-
bers include the rational numbers, 
such as the integer −5 and the 
fraction 4/3. The rest of the real 
numbers are called irrational  
numbers. Some irrational numbers 
are the root of a polynomial  
with integer coefficients, such  
AS THE SQUARE ROOT √2=1.414…;  
THESE ARE ALGEBRAIC NUMBERS. THERE 
ARE ALSO REAL NUMBERS WHICH ARE  
NOT SUCH AS Π=3.1415…; THESE ARE 

The real numbers form a metric space:  
the distance between x and y is defined  
as the absolute value |x−y|. By virtue  
of being a totally ordered set, they also 
carry an order topology; the topology 
arising from the metric and the one aris-
ing from the order are identical, but 
yield different presentations for the 
topology in the order topology as orde- 
red intervals, in the metric topology  
as epsilon-balls. The reals form a con-
tractible connected and simply connected), 
SEPARABLE AND COMPLETE METRIC SPACE OF 
HAUSDORFF DIMENSION 1. THE REAL NUMBERS 
ARE LOCALLY COMPACT BUT NOT COMPACT.  

Simple fractions were used by 
the Egyptians around 1000 BC; 
the Vedic “Shulba Sutras”  
(“The rules of chords”) in c. 
600 BC include what may be  
the first “use” of irrational 
numbers. The concept of irra-
tionality was implicitly 
accepted by early Indian math-
ematicians such as Manava  
(c. 750–690 BC), who was aware 
that the square roots of cer-
tain numbers, such as 2 and 61, 
could not be exactly deter-
mined. Around 500 BC, the Greek 
mathematicians led by Pytha-
GORAS ALSO REALIZED THAT THE 
SQUARE ROOT OF 2 IS IRRATIONAL. 
THE MIDDLE AGES BROUGHT ABOUT  
THE ACCEPTANCE OF ZERO, NEGA- 
TIVE NUMBERS, INTEGERS, AND 

fractional numbers, first by 
Indian and Chinese mathemati-
cians, and then by Arabic math-
ematicians, who were also  
the first to treat irrational 
numbers as algebraic objects 
(the latter being made possible 
by the development of algebra). 
Arabic mathematicians merged the 
concepts of “number” and “mag-
nitude” into a more general idea  
of real numbers. The Egyptian 
mathematician Abū Kāmil Shujā 
ibn Aslam (c. 850–930) was  
the first to accept irrational 
numbers as solutions to quad-
RATIC EQUATIONS, OR AS COEFFI-
CIENTS IN AN EQUATION (OFTEN  
IN THE FORM OF SQUARE ROOTS,  
CUBE ROOTS AND FOURTH ROOTS).  
IN EUROPE, SUCH NUMBERS,  

not commensurable with the  
numerical unit, were called 
irrational or surd (“deaf”).  
In the 16th century, Simon  
Stevin created the basis for 
modern decimal notation,  
and insisted that there is no 
difference between rational  
and irrational numbers in this 
regard. In the 17th century, 
Descartes introduced the term 
“real” to describe roots of  
a polynomial, distinguishing 
them from “imaginary” ones.  
In the 18th and 19th centuries, 
there was much work on irra-
TIONAL AND TRANSCENDENTAL NUM-
BERS. LAMBERT (1761) GAVE A 
FLAWED PROOF THAT Π CANNOT BE 
RATIONAL; LEGENDRE (1794)  
COMPLETED THE PROOFAND SHOWED 

Conversely, analytic geometry is the association of points  

on lines (especially axis lines) to real numbers such that geo-

metric displacements are proportional to differences between 

corresponding numbers. The informal descriptions above of the 

real numbers are not sufficient for ensuring the correctness  

of proofs of theorems involving real numbers. The realization 

that a better definition was needed, and the elaboration of 

such a definition was a major development of 19th-century 

mathematics and is the foundation of real analysis, the study 

of real functions and real-valued sequences. A current axio-

MATIC DEFINITION IS THAT REAL NUMBERS FORM THE UNIQUE (UP TO  

AN ISOMORPHISM) DEDEKIND-COMPLETE ORDERED FIELD. OTHER COMMON 

DEFINITIONS OF REAL NUMBERS INCLUDE EQUIVALENCE CLASSES OF 

Real numbers are completely characterized by  
their fundamental properties that can be summari-
zed by saying that they form an ordered field  
that is Dedekind complete. Here, “completely cha-
racterized” means that there is a unique isomor-
phism between any two Dedekind complete ordered 
fields, and thus that their elements have exactly 
the same properties. This implies that one can  
manipulate real numbers and compute with them, 
without knowing how they can be defined; this is 
what mathematicians and physicists did during  
several centuries before the first formal defini-
TIONS WERE PROVIDED IN THE SECOND HALF OF THE  
19TH CENTURY. SEE CONSTRUCTION OF THE REAL NUMBERS 
FOR DETAILS ABOUT THESE FORMAL DEFINITIONS AND  
THE PROOF OF THEIR EQUIVALENCE. THE REAL NUMBERS 
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⬙ Wessel’s memoir appeared in the 
Proceedings of the Copenhagen Academy 
but went largely unnoticed. In 1806 
Jean-Robert Argand independently 
issued a pamphlet on complex numbers 
and provided a rigorous proof of  
the fundamental theorem of algebra. 
Carl Friedrich Gauss had earlier 
published an essentially topological 
PROOF OF THE THEOREM IN 1797 BUT 
EXPRESSED HIS DOUBTS AT THE TIME 
ABOUT “THE TRUE METAPHYSICS OF THE 
SQUARE ROOT OF −1”. IT WAS NOT UNTIL 

Argand diagram
Argument
Analytic function
Conjugate pair
Contour integral
Exponential
Essential singularity
Fractal Suite
GAUSSIAN INTEGERS
GEOMETRIC 
IMAGINARY UNIT (I)

I. Isomorphism
M. Magnitude
   Möbius Function
   Modulus
N. Normal form 
O. Orthogonal
P. Phase angles 
   PRINCIPAL VALUE
Q. QUATERNON 

Quotient
Riemann sphere
Reciprocal
[5=5/1]→[1/5]
Tangent
WAVE FUNCTION
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╭──┤COMPLEX├────────────────────────────────────┤A├────────────────────────────────────────────────╮
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│  ╭──┤IMAGINARY├──╮ ╭──┤REAL├──────────────────┤B.2├───────────────────────────────────────────╮  │
│  │               │ │                                                                          │  │
├┈┈┤               │ │                                                                          ├┈┈┤
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭──┤IRRATIONAL├──────────┤C.1├────────────────────────────────────────╮  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     ├┈┈┤  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ ╰─────────────────────────────────────────────────────────────────────╯  │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭──┤RATIONAL├────────────┤C.2├────────────────────────────────────────╮  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     ├┈┈┤  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │ ╭──┤INTEGER├───────────┤D├───────────────────────────────────────╮  │  │  │
│  │               │ │ │ │                                                                │  │  │  │
│  │               │ │ │ │                                                                ├┈┈┤  │  │
│  │               │ │ │ │                                                                │  │  │  │
│  │               │ │ │ │ ╭━━┥WHOLE┝━━━━━━━━━━━┥E┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮  │  │  │  │
│  │               │ │ │ │ ┃                                                           ┃  │  │  │  │
│  │               │ │ │ │ ┃                                                           ┣┈┈┤  │  │  │
│  │               │ │ │ │ ┃                                                           ┃  │  │  │  │
│  │               │ │ │ │ ┃                                                           ┃  │  │  │  │
│  │               │ │ │ │ ┃                                                           ┃  │  │  │  │
│  │               │ │ │ │ ┃                                                           ┃  │  │  │  │
│  │               │ │ │ │ ┃                                                           ┃  │  │  │  │
│  │               │ │ │ │ ╰━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╯  │  │  │  │
│  │               │ │ │ ╰────────────────────────────────────────────────────────────────╯  │  │  │
│  │               │ │ ╰─────────────────────────────────────────────────────────────────────╯  │  │
│  ╰──┤B.1├────────╯ ╰──────────────────────────────────────────────────────────────────────────╯  │
│                                                                                                  │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
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LL Riforma Mono Bold

11,808 Points



LL Riforma Mono – Specimen Lineto Type Foundry21

4.5 Points

6 Points

7 Points

9 Points

10.5 Points

Although the Greek mathematician 
and engineer Heron of Alexandria is 
noted as the first to present  
a calculation involving the square 
root of a negative number, it  
was Rafael Bombelli who first set 
down the rules for multiplica- 
tion of complex numbers in 1572. 
The concept had appeared in  
print earlier, such as in work by 
Gerolamo Cardano. At the time, 
imaginary numbers and negative num-
BERS WERE POORLY UNDERSTOOD AND 
WERE REGARDED BY SOME AS FICTITIOUS 
OR USELESS, MUCH AS ZERO ONCE WAS. 
MANY OTHER MATHEMATICIANS WERE  

slow to adopt the use of imagi- 
nary numbers, including René 
Descartes, who wrote about them  
in his La Géométrie in which  
he coined the term imaginary and 
meant it to be derogatory.  
The use of imaginary numbers was 
not widely accepted until the  
work of Leonhard Euler (1707–1783) 
and Carl Friedrich Gauss (1777–
1855). The geometric significance 
of complex numbers as points  
IN A PLANE WAS FIRST DESCRIBED BY 
CASPAR WESSEL (1745–1818). IN 1843, 
WILLIAM ROWAN HAMILTON EXTENDED  
THE IDEA OF AN AXIS OF IMAGINARY 

The next step was taken by Eudoxus  
of Cnidus, who formalized a new theory  
of proportion that took into account  
commensurable as well as incommensurable 
quantities. Central to his idea was  
the distinction between magnitude and  
number. A magnitude“… was not a number  
but stood for entities such as line  
segments, angles, areas, volumes, and  
time which could vary, as we would say, 
continuously. Magnitudes were opposed  
to numbers, which jumped from one value  
TO ANOTHER, AS FROM 4 TO 5”. NUMBERS  
ARE COMPOSED OF SOME SMALLEST, INDIVISI-
BLE UNIT, WHEREAS MAGNITUDES ARE INFI- 

Electronic calculators  
and computers cannot operate  
on arbitrary real numbers, 
because finite computers can-
not directly store infini- 
tely many digits or other 
infinite representations. Nor  
do they usually even operate 
on arbitrary definable real  
numbers, which are inconven-
ient to manipulate. Instead, 
computers typically work  
with finite-precision approxi-
mations called floating- 
point numbers, a representa-
tion similar to scientific 
NOTATION. THE ACHIEVABLE  
PRECISION IS LIMITED BY THE  
DATA STORAGE SPACE ALLO- 
CATED FOR EACH NUMBER, WHETHER  
AS FIXED-POINT, FLOATING- 

point, or arbitrary-precision 
numbers, or some other repre-
sentation. Most scientific  
computation uses binary float-
ing-point arithmetic, often  
a 64-bit representation with 
around 16 decimal digits  
of precision. Real numbers 
satisfy the usual rules of  
arithmetic, but floating-point 
numbers do not. The field  
of numerical analysis studies 
the stability and accuracy  
of numerical algorithms imple-
mented with approximate ari-
thmetic.Alternately, computer 
ALGEBRA SYSTEMS CAN OPERATE  
ON IRRATIONAL QUANTITIES EXAC-
TLY BY MANIPULATING SYMBOLIC 
FORMULAS FOR THEM RATHER THAN 
THEIR RATIONAL OR DECIMAL 

approximation. But exact  
and symbolic arithmetic also 
have limitations: for ins-
tance, they are computation-
ally more expensive; it is  
not in general possible to 
determine whether two symbolic 
expressions are equal (the 
constant problem); and arith-
metic operations can cause 
exponential explosion in the 
size of representation of a 
single number (for instance, 
squaring a rational number 
roughly doubles the number of 
digits in its numerator and 
DENOMINATOR, AND SQUARING A 
POLYNOMIAL ROUGHLY DOUBLES  
ITS NUMBER OF TERMS), OVER-
WHELMING FINITE COMPUTER STOR-
AGE. A REAL NUMBER IS CALLED 

Geometrically, imaginary numbers are found on the vertical  

axis of the complex number plane, which allows them to be pre-

sented perpendicular to the real axis. One way of viewing  

imaginary numbers is to consider a standard number line posi-

tively increasing in magnitude to the right and negatively 

increasing in magnitude to the left. At 0 on the x-axis, a 

y-axis can be drawn with “positive” direction going up; “posi-

tive” imaginary numbers then increase in magnitude upwards,  

and “negative” imaginary numbers increase in magnitude down-

WARDS. THIS VERTICAL AXIS IS OFTEN CALLED THE “IMAGINARY  

AXIS” AND IS DENOTED IR, I, OR I. IN THIS REPRESENTATION, MUL-

TIPLICATION BY I CORRESPONDS TO A COUNTERCLOCKWISE ROTATION  

OF 90 DEGREES ABOUT THE ORIGIN, WHICH IS A QUARTER OF A CIRCLE. 

In mathematics, the irrational numbers  
(from in- prefix assimilated to ir- (negative  
prefix, privative) + rational) are all  
the real numbers that are not rational numbers. 
That is, irrational numbers cannot be expre- 
ssed as the ratio of two integers. When  
the ratio of lengths of two line segments is  
an irrational number, the line segments  
are also described as being incommensurable,  
meaning that they share no “measure” in  
common, that is, there is no length (“the mea-
sure”), no matter how short, that could  
BE USED TO EXPRESS THE LENGTHS OF BOTH OF THE  
TWO GIVEN SEGMENTS AS INTEGER MULTIPLES  
OF ITSELF. AMONG IRRATIONAL NUMBERS ARE THE  
RATIO Π OF A CIRCLE'S CIRCUMFERENCE TO  
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⦿ Unlike the real numbers, there  
is no natural ordering of the com-
plex numbers. In particular, there  
is no linear ordering on the com- 
plex numbers that is compatible  
with addition and multiplication. 
Hence, the complex numbers do not 
have the structure of an ordered 
field. One explanation for this is 
THAT EVERY NON-TRIVIAL SUM OF SQUA-
RES IN AN ORDERED FIELD IS NONZERO,  
AND I²+1²=0 IS A NONTRIVIAL SUM  
OF SQUARES. THUS, COMPLEX NUMBERS  

Associative property
Average coefficient
(Base 10) Ⅹ System
Commutative property
±Divisibile 
Equal groups, Exponent
Factorization
Fraction 1/(2²)=1/4
GEOMETRIC MEAN
HINDU–ARABIC SYSTEM
INFINITE INTEGRERS

◒ Inradius 1/4a(√(3)-1)
◓ Identity element
● Logistic growth
◐ Multiplicative 
◑ Nth term, Odd number 
● Octal Periodic 
◔ Power of Ten 
◕ PROPERTY OF ZERO
● PYTHAGOREAN

Residue(f,a)
Squaring = x²
Tetrahedron
Unit Matrice
Venn, Vinculum
V₁=(√8/9,0,−1/3)
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╭──┤COMPLEX├────────────────────────────────────┤A├────────────────────────────────────────────────╮
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│                                                                                                  │
│  ╭──┤IMAGINARY├──╮ ╭──┤REAL├──────────────────┤B.2├───────────────────────────────────────────╮  │
│  │               │ │                                                                          │  │
├┈┈┤               │ │                                                                          ├┈┈┤
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭──┤IRRATIONAL├──────────┤C.1├────────────────────────────────────────╮  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     ├┈┈┤  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ ╰─────────────────────────────────────────────────────────────────────╯  │  │
│  │               │ │                                                                          │  │
│  │               │ │ ╭──┤RATIONAL├────────────┤C.2├────────────────────────────────────────╮  │  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │                                                                     ├┈┈┤  │
│  │               │ │ │                                                                     │  │  │
│  │               │ │ │ ╭──┤INTEGER├───────────┤D├───────────────────────────────────────╮  │  │  │
│  │               │ │ │ │                                                                │  │  │  │
│  │               │ │ │ │                                                                ├┈┈┤  │  │
│  │               │ │ │ │                                                                │  │  │  │
│  │               │ │ │ │ ╭──┤WHOLE├───────────┤E├────────────────────────────────────╮  │  │  │  │
│  │               │ │ │ │ │                                                           │  │  │  │  │
│  │               │ │ │ │ │                                                           ├┈┈┤  │  │  │
│  │               │ │ │ │ │ ╭━━┥NATURAL┝━━━━━━━┥F┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╮  │  │  │  │  │
│  │               │ │ │ │ │ ┃                                                      ┃  │  │  │  │  │
│  │               │ │ │ │ │ ┃                                                      ┣┈┈┤  │  │  │  │
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No part of this publication may  
be reproduced, stored in a retrieval 
system, or transmitted, in any 
form or by any means, electronic, 
mecanical, photocopying, record-
ing or otherwise, without the prior 
written consent of the publisher. 
This publication and the informa-
tion herein is furnished AS IS, is 
subject to change without notice, 
and should not be constured as a 
commitment by Lineto GmbH.

Lineto GmbH assumes no resposi-
bility for any errors or inaccuracies, 
makes no warranty of any kind 
(express, implied or statutory) with 
respect to this publication, and 
expressly disclaims any and all war-
ranties of merchantability, fitness 
for particular purposes and non-
infringement of third party rights. 
Brand or product names, used in 
this publication, are the trademarks 
or registered trademarks of their 
respective holders.
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calt Contextual Alternates
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 Decomposition
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dnom Denominators
frac Fractions
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nalt Alternate Annotation Forms
numr Numerators
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ss01 Stylistic Set 1 
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ss17 Stylistic Set 17
ss18 Stylistic Set 18 
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