Riforma *Mono*

Family Overview

S	t٧	les
	× .	

Riforma Mono Light Riforma Mono Light Italic Riforma Mono Regular Riforma Mono Italic Riforma Mono Bold Riforma Mono Bold Italic

Separate PDF	Rifo rma							
Supported Scripts	Latin Extended							
File Formats	Opentype CFF, Truetype, WOFF, WO	Opentype CFF, Truetype, WOFF, WOFF2						
Design	NORM (Dimitri Bruni, Manuel Krebs,	, Ludovic Varone) (2021 – 2023)						
Contact	General inquiries: service@lineto.com Technical inquiries: support@lineto.com	Lineto GmbH Lutherstrasse 32 CH-8004 Zürich Switzerland						
	Sales & licensing inquiries: sales@lineto.com	Telephone +41 44 545 35 00 www.lineto.com						

About the Font Complementing Norm's signature

LL Riforma family of typefaces from 2018, the 2024 LL Riforma Mono with three weights is the latest addendum to their type œuvre that now spans a quarter century. It brings Norm back to the early days when they drew several monospaced fonts to fit their ultra-normative approach to graphic design meticulously tuned to the millimeter. Still today the monospace genre occupies a special position in Norm's universe. They consider the unified character width the most simple and versatile solution for typesetting. And they cheerfully embrace the challenge to fill the boxes in the best way possible with the rather random shapes that history has brought upon us in the form of Latin letters.

LL Riforma was predestined for a Mono fit, given its geometric construction and its slightly boxy shapes owed to a relatively large x-height. Many letters offered themselves to convenient squeezing into the boxes, while others provided sufficient options to expand on the playful undertones of this highly regulated typeface. The confidently prolonged serifs and crossbars present variations on some of the distinct strokes of LL Riforma, while the pronounced sharpness of the original shapes gives way to a slightly softer overall appearance. All the while the Mono styles preserve with grandezza the two outstanding qualities of their predecessor: a graphic appearance in large applications as well as excellent readability in smaller sizes.

To underscore the monospace dogma, LL Riforma is equipped with the full sets of Unicode-approved box-drawing characters and block elements. Both sets originated in the era of early digital fonts, when various kinds of lines and square-shapes were displayed and printed with the help of these semigraphics in lack of better options. The approach became redundant once PostScript technology enabled the integration of text and drawings (as well as any other kind of imagery), and in the age of AI the longdiscarded semigraphics might remind us that typography was once a craft of the human hand.

Glyph Overview

Uppercase	A Q	_	C S	D T	E U	-	G W		_	_	K	L	М	Ν	0	Ρ
Lowercase	a q		C S	_	e t		g v			ј У		1	m	n	0	р
Proportional	0	1	2	3	4	5	6	7	8	9						
Ligatures	f	f ·	fi	f	1	ffi	f	fl								
Std Accented Characters - Standard Western	À È Đ Ÿ	à è ð Ӱ	É Ł Ø	á é ł Ø Ž	Ê Ñ Š	â ê ñ š þ	Ã Ë Œ Ù	ã ë œ ù	Ì Ò	ä ì Ò Ú	Í Ó	å í ú	Æ Î Ô Ü	æ î ô Ü	Ç Ï Õ Ý	ç ï ỹ
Pro Accented Characters - Latin Extension	ĀČĜĬĻŎŞŬŻ	Ŏ Ş Ŭ	Ď Ğ Į	ď ğ į	-	đ ġ ı	Ē Ģ IJ Ń Ŕ Ţ	ē ģ j Ņ ŕ ţ	ĔĤĴ ŅŖŤ	ĕ ĥ Ĵ Ň ŗ	ĖĦĶ ŇŘŦ	ė ħķ'nřŧ	ĘĨĸŊŚŨ		Ċ Ĕ Ī Ū Ŝ Ū Ź	ĊěīĻōŝūź

Punctuation	(-	,	:	;	?	<u>!</u>	ż	ī)	Γ	&	6	#]
	{	-	_	_	}	«	»	۲	>	"	"	"	,	6	,	_
	/	١	1	"	†	‡	*	•	¶	§	©	R	ТМ			
Case Sensitive Forms	()	Γ]	{	}	-	_	_	۲	>	«	»			
Currency, Mathematical	€	\$	£	¥	¢	¤	⁰⁄₀	%	+	_	×	÷	=	≠	≈	<
Operators	>	≤	≥	±	~	-	٥	д	Δ	Π	Σ	Ω	μ	ſ	Ø	V
	۸		I I	l	0	/										
Superscripts, Fractions, Ordinals	Η	1	2	3		-	1 1	⁄4 ¹ /	⁄2 ³ ,	4		1	0	а		
Numerators, Denominators	1	0	1	2	3	4	5	6	7	8	9					
Denominators	1	0	1	2	3	4	5	6	7	8	9					
Superscripts,	Н	0	1	2	3	4	5	6	7	8	9					
Subscripts	Η	0	1	2	3	4	5	6	7	8	9					
Arrows	←	→	↑	Ŷ	٢	7	Ŕ	Ľ	↑							
Symbols - Numbers	1	2	3	4	5	5	6	0	8	9						
- Numpers	0	0	0	4	6	6	6	0	8	0						
Roman Numerals	Ι	Π	Ш	IV	V	VI	VII	VII	IX	Х	XI	XII	L	С	D	Μ

Glyph Overview

Symbols	$\oplus \ominus \otimes \oslash \oplus \odot \odot \odot \bullet \bullet \bullet \bullet \bullet \bullet \bullet \Box \Box \Box \Box \Box \Box$
	$\blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \land \land \land \land \land \lor \lor \lor \lor \land \land \diamond \diamond \diamond \diamond$
	�▲₩《★¥₩₩Ⅱ■●■ΞΞΞΞΞΞΞ
	▶ ✓ * ⊻ ⊙ ⊕ e ♥]]]]] 6 6 6 9] [] [] []
	⊂⋑▀▋▖▖▘▝▚▞▙▛┓▟▐▌▓░┆┼╪Ň [╼]
	 ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ − ┌ ┐ └ ┘
	┝┥┭┴┽╷╶╵╴╒╓╕╖╘╙╛╜╞╟╡╢
	╤╥╧╨╪╫═║╔╗╚╝╠╣╦╩╬ ╾┃┎┓
	┗┛┣┫┳┻╋╻╺╹╸┍┎┑┒┕┙┚┝┠┥

	· / ╉ ╊ ╈ ╇ ╅ ╆ 루 ╄ ╁ ╀ ┽ ┾ ┹ ┺ ┱ ┲ ┢ ┡
	! ! !

Layout Features

Case Sensitive Forms	[Discret] May-July	[DISCRET] MAY-JULY
	«Hello»	«HELLO»
Standard Ligatures	flat office	flat office
Tabular Lining	4.9.1984	4.9.1984
Numbers	1.1.2011	1.1.2011
Arbitrary Fractions	3 5/1 × 3 3/4	23 $\frac{5}{1} \times 3 \frac{3}{4}$
Tractions	2 7/8	2 7/8
	6 2/5 × 9 4/5	$6^{2/_{5}} \times 9^{4/_{5}}$
	34 1/6 ÷ 7 1/7	$34 \frac{1}{6} \div 7 \frac{1}{7}$
	90 2/3	90 ² / ₃
Superscript	North1, East2	North ¹ , East ²
Subscript	H20	H ₂ O
Ordinals	1 a	1 ^a
	10	1°
Sharp S	Nebenstrasse	Nebenstraße

Layout Features

Stylistic Set 1: Diagonal Endings	Different Alternate Variety Adjustment ADJUSTMENT CHANGE	Different Alternate Variety Adjustment ADJUSTMENT CHANGE
Stylistic Set 2: Titling f, i, j, t	Defined Multiplied Adjusted	Defined Multiplied Adjusted
Stylistic Set 3: Stacked Fraction	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 ¹ ⁄ ₅ × 3 ³ ⁄ ₄ 2 ⁷ ⁄ ₈ 6 ² ⁄ ₅ × 9 ⁴ ⁄ ₅
Stylistic Set 18: Box Drawing Double Arc		REACT
Stylistic Set 19: Box Drawing Heavy Arc		(ADAPT)

LL Riforma Mono Light

4.5 Points

6 Points

ber is an element of a number system that extends the real numbers with a specific element numbers and are fundamental denoted i, called the imaginary unit and satisfying the equation i²=-1: every complex number can be expressed in the form a+bi, where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number a + bi, a is called the real part. and b is called THE IMAGINARY PART. THE SET OF COMPLEX NUMBERS IS DENOTED BY EITHER OF THE SYMBOLS C OR C. DESPITE THE HISTORI-CAL NOMENCLATURE "IMAGINARY".

In mathematics, a complex num-

complex numbers are regarded in the mathematical sciences as just as "real" as the real in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant plex numbers also form a real polynomial equation with real or complex coefficients has a solution which is a complex NUMBER. FOR EXAMPLE, THE EQUATION (X+1)²=-9 HAS NO REAL SOLUTION SINCE THE SOUARE OF A REAL NUMBER CANNOT BE NEG-ATIVE. BUT HAS THE TWO NON-

real complex solutions and Addition, subtraction and multiplication of complex numbers can be naturally defined by using the rule i2=-1 combined with the associative. commutative. and distributive laws. Every non-zero complex number has a multiplicative inverse. This makes the complex numbers a field that has the real numbers as a subfield. The comvector space of dimension two, with {1, i} as a standard basis. This standard basis MAKES THE COMPLEX NUMBERS A CARTESIAN PLANE, CALLED THE COMPLEX PLANE THIS ALLOWS A GEOMETRIC INTERPRETATION OF THE COMPLEX NUMBERS AND THEIR

both a complex input and output are needed. Because each complex number is represented in two dimensions, visually graphing a complex function would require the perception of a four dimensional space, which is possible only in projections. Because of this, other ways of visualizing complex functions have been designed. In domain coloring the output dimensions are REPRESENTED BY COLOR AND BRIGHTNESS. RESPECTIVELY. EACH POINT IN THE COMPLEX PLANE AS DOMAIN IS ORNATED,

TYPICALLY WITH COLOR REPRESENTING

When visualizing complex functions,

the argument of the complex number. and brightness representing the magnitude. Dark spots mark moduli near zero. brighter spots are farther away from the origin, the gradation may be discontinuous, but is assumed as monotonous. The colors often vary in steps of $\pi/3$ for 0 to 2π from red, yellow, green, cyan, blue, to magenta. These plots are called color wheel graphs. This provides a simple way to visualize THE FUNCTIONS WITHOUT LOSING INFOR-MATION. THE PICTURE SHOWS ZEROS FOR ± 1 , (2+I) AND POLES AT $\pm -2-2I$. THE SOLUTION IN RADICALS ric

7 Points - SS01 Diagonal Endings

For example, the real numbers form the real line which is identified to the horizontal axis of the complex plane. The complex numbers of absolute value one form the unit circle. The addition of a complex number is a translation in the complex plane, and the multiplication by a complex number is a similarity centered at the origin. The complex conjugation is the reflection symmetry with respect to the real axis. The complex absolute value is a Euclidean norm. In summary, the complex numbers form a rich structure that is simultaneously an algebraically closed field, a commutative algebra over the reals, and a Euclidean VECTOR SPACE OF DIMENSION TWO. A COMPLEX NUMBER IS A NUMBER OF THE FORM A+BI, WHERE A AND B ARE REAL NUMBERS, AND I IS AN INDETERMINATE SATISFYING I²=-1. FOR EXAMPLE. 2+ I IS A COMPLEX

9 Points

A real number a can be regarded as a complex number a+0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0+bi. whose real part is zero. As with polynomials, it is common to write a for a + 0i and bi for 0+bi. Moreover, when the imaginary part is negative, that is, b=-|b|<0, it is common to write a-|b|i instead of a + (-|b|)i; for example, for b=-4, 3-4i can be written instead of 3+(-4)i. Since the multiplication of the indeterminate i and a real is commutative in polynomials with real coefficients. the polynomial a + bi may be written AS A+IB. THIS IS OFTEN EXPEDIENT FOR IMAGINARY PARTS DENOTED BY EXPRESSIONS, FOR EXAMPLE, WHEN B IS A RADICAL. THE SET OF ALL COMPLEX NUMBERS IS DENOTED BY C (BLACKBOARD BOLD) OR C (UPRIGHT

10.5 Points

A complex number z can thus be identified with an ordered pair (R(z), I(z)) of real numbers, which in turn may be interpreted as coordinates of a point in a two-dimensional space. The most immediate space is the Euclidean plane with suitable coordinates, which is then called complex plane or Argand diagram, named after Jean-Robert Argand. Another prominent space on which the coordinates may be projected is the two-dimensional surface of a sphere, which is then called Riemann sphere. The defini-TION OF THE COMPLEX NUMBERS INVOLVING TWO ARBITRARY REAL VALUES IMMEDIATELY SUGGESTS THE USE OF CARTESIAN COORDINATES IN THE

LL Riforma Mono Light

• The solution in radicals of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ("irreducible case"). THIS CONUNDRUM LED ITALIAN MATHEMATI-CIAN GEROLAMO CARDANO TO CONCEIVE OF COMPLEX NUMBERS IN AROUND 1545 IN HIS ARS MAGNA, THOUGH HIS UNDERS-

16 Points

Algebraic form Complex exponential Contour integral Euler's Identity Proof Exponential Fractal geometry Holomorphic Imaginary axis LAPLACE TRANSFORM LOGARITHM MEROMORPHIC FUNCTION 20 Points - SS02 Titling

f, i, j, t

32 Points

N-th Root – $(-3)^2=9$ Opposite of complex Polar coordinates Principal argument Quaternions, 1843 Reel Axis [i[z]=0] Riemann fonction SÉRIES DE FOURIER SQUARE ROOT – $Y^2=X$

Tangent n+1⁄₂ Unit Lenght Vertical Axis Wiener-Khinchin x=0 √1+x ZETA FUNCTION

LL Riforma Mono Light

11,808 Points

1,0001 01113							
			/	<i>م</i>			
1+2i	-3-4i	5+6i	-7-8i	9+10i	-11-12i	13+14i	-15-16i
17+18i	-19-20i	21+22i	-23-24i	25+26i	-27-28i	29+30i	-31-32i
33+34i	-35-36i	37+38i	-39-40i	41+42i	-43-44i	45+46i	-47-48i
49+50i	-51-52i	53+54i	-55-56i	57+58i	-59-60i	61+62i	-63-64i
65+66i	-67-68i	69+70i	-71-72i	73+74i	-75-76i	77+78i	-79-80i
81+82i	-83-84i	85+86i	-87-88i	89+90i	-91-92i	93+94i	-95-96i
97+98	-99-100i	101+102i	-103-104i	105+106i	-107-108i	109+110i	-111-112i
113+114i	-115-116i	117+118i	-119-120i	121+122i	-123-124i	125+126i	-127-128i
129+130i	-131-132i	133+134i	-135-136i	137+138i	-139-140i	141+142i	-143-144i
145+146i	-147-148i	149+150i	-151-152i	153+154i	-155-156i	157+158i	-159-160i
161+162i	-163-164i	165+166i	-167-168i	169+170i	-171-172i	173+174i	-175-176i
177+178i	-179-180i	181+182i	-183-184i	185+186i	-187-188i	189+190i	-191-192i
193+194i	-195-196i	197+198i	-199-200i	201+202i	-203-204i	205+206i	-207-208i
209+210i	-211-212i	213+214i	-215-216i	217+218i	-219-220i	221+222i	-223-224i
225+226i	-227-228i	229+230i	-231-232i	233+234i	-235-236i	237+238i	-239-240i
241+242i	-243-244i	245+246i	-247-248i	249+250i	-251-252i	253+254i	-255-256i
257+258i	-259-260i	261+262i	-263-264i	265+266i	-267-268i	269+270i	-271-272i
273+274i	-275-276i	277+278i	-279-280i	281+282i	-283-284i	285+286i	-287-288i
289+290i	-291-292i	293+294i	-295-296i	297+298i	-299-300i	301+302i	-303-304i
305+306i	-307-308i	309+310i	-311-312i	313+314i	-315-316i	317+318i	-319-320i
321+322i	-323-324i	325+326i	-327-328i	329+330i	-331-332i	333+334i	-335-336i
337+338i	-339-340i	341+342i	-343-344i	345+346i	-347-348i	349+350i	-351-352i
353+354i	-355-356i	357+358i	-359-360i	361+362i	-363-364i	365+366i	-367-368i
369+370i	-371-372i	373+374i	-375-376i	377+378i	-379-380i	381+382i	-383-384i
385+386i	-387-388i	389+390i	-391-392i	393+394i	-395-396i	397+398i	-399-400i
401+402i	-403-404i	405+406i	-407-408i	409+410i	-411-412i	413+414i	-415-416i
417+418i	-419-420i	421+422i	-423-424i	425+426i	-427-428i	429+430i	-431-432i
433+434i	-435-436i	437+438i	-439-440i	441+442i	-443-444i	445+446i	

LL Riforma Mono Light Italic

4.5 Points							
– SS03							
Stacked							
Fractions							

The symbol for the real numbers is R. They include all the measuring numbers. Every real number corresponds to a point on the number line. The following paragraph will focus primarily on positive real numbers. The treatment of negative real numbers is according to the general rules of arithmetic and their denotation is simply prefixing the corresponding positive numeral by a minus sign, -123.456. Most real numbers can only be approximated BY DECIMAL NUMERALS. IN WHICH A DECIMAL POINT IS PLACED TO THE RIGHT OF THE DIGIT WITH PLACE VALUE 1. EACH DIGIT TO THE RIGHT OF THE DECIMAL POINT

has a place value one-tenth of the place value of the digit to its left. For example, 123.456 represents 12345%1000. or, in words, one hundred, two tens, three ones, four tenths, five hundredths, and six thousandths. A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10. the base of the decimal svs-TEM. THUS, FOR EXAMPLE, ONE HALF IS 0.5, ONE FIFTH IS 0.2, ONE-TENTH IS 0.1. AND ONE FIF-TIETH IS 0.02. REPRESENTING OTHER REAL NUMBERS AS DECIMALS

would require an infinite sequence of digits to the right of the decimal point. If this infinite seauence of digits follows a pattern. it can be written with an ellipsis or another notation that indicates the repeating pattern. Such a decimal is called a repeating decimal. Thus 1/3 can be written as 0.333.... with an ellipsis to indicate that the pattern continues. Forever repeating 3s are also written as 0.3. It turns out that these repea TING DECIMALS DENOTE EXACTLY THE RATIONAL NUMBERS. ALL RATTONAL NUMBERS ARE ALSO REAL NUMBERS, BUT IT IS NOT THE CASE THAT EVERY REAL NUMBER IS

6 Points

The most familiar numbers are the natural numbers (sometimes called whole numbers or counting numbers): 1. 2. 3. and so on. Traditionally. the sequence of natural numbers started with 1 (0 was not even considered a number for the Ancient Greeks.) However, in the 19th century, set theorists and other mathematicians started including 0 (cardinality of the empty set, 0 elements. where 0 is thus THE SMALLEST CARDINAL NUMBER) IN THE SET OF NATURAL NUMBERS. TODAY, DIFFERENT MATHEMATICIANS USE THE TERM TO DESCRIBE BOTH SETS, INCLU-

ding 0 or not. The mathematical symbol for the set of all natural numbers is N, also written N and sometimes No or No when it is necessarv to indicate whether the set should start with 0 or 1, respectively. In the base 10 numeral system, in almost universal use today for mathematical operations, the symbols for natural numbers are written using ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, AND 9. THE RADIX OR BASE IS THE NUMBER OF UNIQUE NUMERICAL DIGITS, INCLUDING ZERO, THAT A NUMERAL SYSTEM USES TO REPRESENT NUMBERS

7 Points

produces 0 when it is added to the corresponding positive integer. Negative numbers are usually written with a negative sign (a minus sign). As an example, the negative of 7 is written -7, and 7+(-7)=0. When the set of negative numbers is combined with the set of natural numbers (including 0), the result is defined as the set of integers, Z also written Z. Here the letter Z comes from German Zahl 'number'. The set of integers forms a ring with the operations addition and multiplication. The natural numbers form a subset of the integers. AS THERE IS NO COMMON STANDARD FOR THE INCLUSION OR NOT OF ZERO IN THE NATURAL NUMBERS, THE NATURAL NUMBERS WITHOUT ZERO ARE COMMONLY REFERRED TO AS POSITIVE INTEGERS, AND THE NATURAL

The negative of a positive integer is defined as a number that

9 Points

The notions of convergent series and continuous functions in (real) analysis have natural analogs in complex analysis. A sequence of complex numbers is said to converge if and only if its real and imaginary parts do. This is equivalent to the definition of limits. where the absolute value of real numbers is replaced by the one of complex numbers. From a more abstract point of view, C, endowed with the metric $d(z_1, z_2) = |z_1 - z_2|$ is a complete metric space, which notably includes the triangle inequality $|z_1+z_2| \le |z_1|+|z_2|$ for any two complex numbers z_1 and z_2 . Like in real analysis, this notion of convergence is used TO CONSTRUCT A NUMBER OF ELEMENTARY FUNCTIONS: THE EXPONENTIAL FUNCTION EXP Z, ALSO WRITTEN EZ, IS DEFINED AS THE INFINITE SERIES. THE SERIES

10.5 Points

The study of functions of a complex variable is known as complex analysis and has enormous practical use in applied mathematics as well as in other branches of mathematics. Often, the most natural proofs for statements in real analysis or even number theory employ techniques from complex analysis (see prime number theorem for an example). Unlike real functions, which are commonly represented as two-dimensional graphs, complex functions have four-dimensional graphs and MAY USEFULLY BE ILLUSTRATED BY COLOR-COD-ING A THREE-DIMENSIONAL GRAPH TO SUGGEST FOUR DIMENSIONS, OR BY ANIMATING THE

LL Riforma Mono Light Italic

• Moreover he later described complex numbers as "as subtle as they are useless." Cardano did use imaginary numbers, but described using them as "mental torture." This was prior to the use of the graphical complex plane. Cardano and other Italian mathematicians, notably Scipione del Ferro, in the 1500s created an algo-RITHM FOR SOLVING CUBIC EQUATIONS WHICH GENERALLY HAD ONE REAL SOLUTION AND TWO SOLUTIONS CONTAINING AN IMA-GINARY NUMBER. SINCE THEY IGNORED THE

16 Points

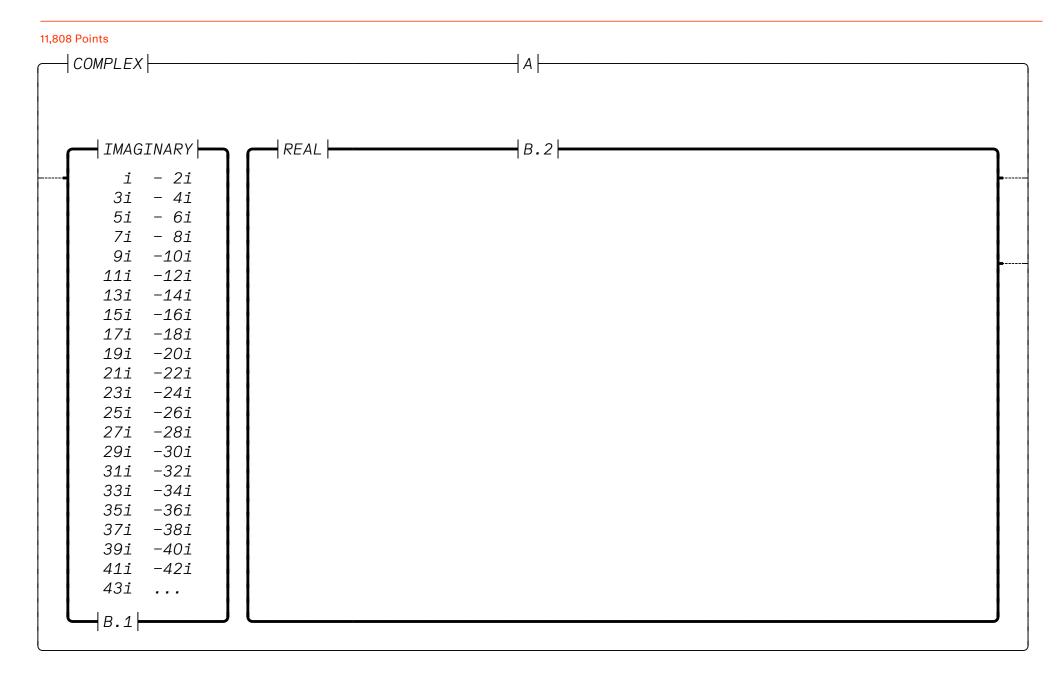
Arithmetic mean Binary, Coefficients Congruence Diophantine equation Elliptic curve Fermat's Last Theorem Golden ratio Greatest common divisor HARSHAD NUMBER INTEGER, LUCAS NUMBER LENGTHS [A] AND [B] 20 Points

32 Points

- I Mersenne prime
 - Ⅱ Non-terminating
 - ${\rm I\!I}$ Odd number \rightarrow 543
 - \mathbb{N} $Pi(\pi) \rightarrow 3.14159265...$
 - V Pythagorean triple
 - M Quotient Graph
 - ℤ Repeating decimal
 - ℤ SEMIPRIME/BIPRIMES
 - IX SQUARE-FREE [S²|R]

Transcendental Ulam spiral Unnatural Wilson prime Zermelo-FRAENKEL THEORY

LL Riforma Mono Light Italic



LL Riforma Mono Regular

4.5 Points

the existence of transcendental numbers in 1844, and in 1851 gave the first decimal examples such as the liouville constant in which the nth digit after the decimal point is 1 if n is equal to k! for some k and 0 otherwise. In other words, the nth diait of this number is 1 only if n is one of the numbers 1!=1. 2!=2. 3!=6. 4!=24. etc. Liouville showed that this number belongs to a class of transcendental numbers that CAN BE MORE CLOSELY APPRO-XIMATED BY RATIONAL NUMBERS THAN CAN ANY TRRATTONAL ALGE-BRATC NUMBER, AND THIS CLASS OF NUMBERS ARE CALLED LIOU-

Joseph Liouville first proved

ville numbers. named in his honour. Liouville showed that all Liouville numbers are transcen-dental. The first number to be proven transcendental without having been specifically constructed for the purpose of proving transcendental numbers' existence was e, by Charles Hermite in 1873. In 1874. Georg Cantor proved that the algebraic numbers are countable and the real numbers are uncountable. He also gave a new method for constructing transcenden-TAL NUMBERS, ALTHOUGH THIS WAS ALREADY IMPLIED BY HIS PROOF OF THE COUNTABLE TTY OF THE ALGEBRATC NUMBERS, CANTOR ALSO PUBLISHED A CONSTRUCTION

that proves there are as many transcendental numbers as there are real numbers. Cantor's work established the ubiquity of transcendental numbers. In 1882, Ferdinand von Lindemann published the first complete proof that π is transcendental. He first pro-ved that ea is transcendental if a is a non-zero algebraic number. Then. since eiπ=-1 is alge-braic (see Euler's identity), iπ must be transcendental. But since i is algebraic. □ THEREFORE MUST BE TRANSCEN. DENTAL. THIS APPROACH WAS GENERALIZED BY KARL WETER-STRASS TO WHAT IS NOW KNOWN AS THE LINDEMANN-WEIERSTRASS

6 Points

Moving to a greater level of abstraction, the real numbers can be extended to the complex numbers. This set of numbers arose historically from trying to find closed formulas for the roots of cubic and guadratic polynomials. This led to expressions involving the square roots of negative numbers, and eventually to the definition of a new number: a square root of -1, denoted by i. a symbol assigned by LEONHARD EULER. AND CALLED THE IMAGINARY UNIT. THE COMPLEX NUMBERS CONSIST OF ALL NUMBERS OF THE FORM A+BI WHERE A AND B ARE REAL

numbers correspond to points on the complex plane, a vector space of two real dimensions. In the expression a + bi, the real number a is called the real part and b is called the imaginary part. If the real part of a complex number is 0, then the number is called an imaginary number or is referred to as purely imaginary; if the imaginary part is 0, THEN THE NUMBER IS A REAL NUMBER. THUS THE REAL NUMBERS ARE A SUB-SET OF THE COMPLEX NUMBERS. IF THE REAL AND IMAGINARY PARTS OF A COM-

numbers. Because of this. complex

7 Points

A computable number, also known as recursive number, is a real number such that there exists an algorithm which, given a positive number n as input, produces the first n digits of the computable number's decimal representation. Equivalent definitions can be given using µ-recursive functions, Turing machines or calculus. The computable numbers are stable for all usual arithmetic operations, including the computation of the roots of a polynomial, and thus form a real closed field that contains the real algebraic numbers. The computable numbers may be viewed as THE REAL NUMBERS THAT MAY BE EXACTLY REPRESENTED IN A COMPUTER: A COMPUTABLE NUMBER IS EXACTLY REPRESENTED BY ITS FIRST DIGITS AND A PROGRAM FOR COMPUTING FURTHER DIGITS. 9 Points

However, an algebraic function of several variables may yield an algebraic number when applied to transcendental numbers if these numbers are not algebraically independent. For example, π and $(1-\pi)$ are both transcendental, but π +(1- π)=1 is obviously not. It is unknown whether $e+\pi$, for example, is transcendental, though at least one of $e+\pi$ and $e\pi$ must be transcendental. More generally, for any two transcendental numbers a and b. at least one of a+b and ab must be transcendental. To see this, consider the polynomial $(x-a)(x-b)=x^2-(A+B)X+AB$. IF (A+B) AND A B WERE BOTH ALGEBRAIC, THEN THIS WOULD BE A POLY-NOMIAL WITH ALGEBRAIC COEFFICIENTS. BECAUSE ALGEBRAIC NUMBERS FORM AN ALGEBRAICALLY CLOSED

10.5 Points

The first number to be proven transcendental without having been specifically constructed for the purpose of proving transcendental numbers' existence was e, by Charles Hermite in 1873. In 1874, Georg Cantor proved that the algebraic numbers are countable and the real numbers are uncountable. He also gave a new method for constructing transcendental numbers. Although this was already implied by his proof of the countability of the algebraic numbers, Cantor also published A CONSTRUCTION THAT PROVES THERE ARE AS MANY TRANSCENDENTAL NUMBERS AS THERE ARE REAL NUMBERS. CANTOR'S WORK SET THE

LL Riforma Mono Regular

Work on the problem of general polynomials ultimately led to the funda-mental theorem of algebra, which shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher. Complex numbers thus form an algebraically closed field, where any polynomial equation HAS A ROOT. MANY MATHEMATICIANS CONTRIBUTED TO THE DEVELOPMENT OF COMPLEX NUMBERS. THE RULES FOR ADDI-TION, SUBTRACTION, MULTIPLICATION,

16 Points - Slashed zero

A. Absolute value Amicable numbers

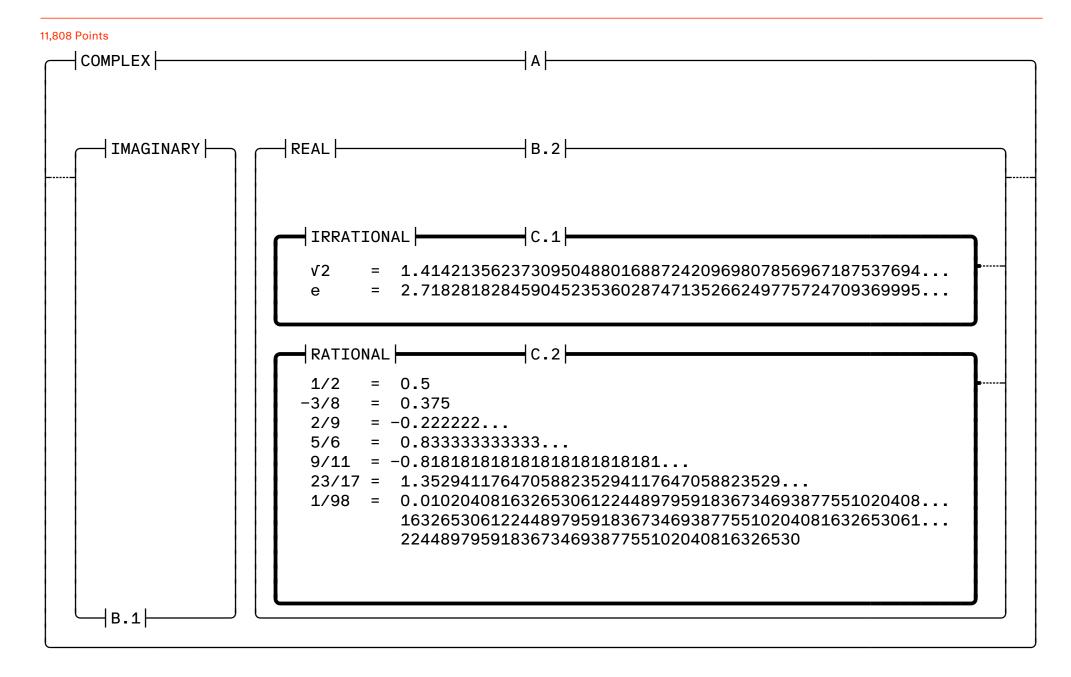
- B. Base 02 (Binary)
 Base 08 (Octal)
 Base 16 (Hexadecimal)
- C. Combinatorial Cycle Lemma
- E. Extraction EUGÈNE CHARLES CATALAN
- G. GEOMETRIC PROGRESSION
- I. IDENTITY MATRIX

20 Points

Lateral surface Matrix disambiguation Multiplication Modular Arithmetic Negative Expo Orthocenter h²=pq Prime factor QUADRATIC EQUATION QUARTILE (Q1)

Recursively Defined Object Sequences Subtraction Property OF EQUALITY

LL Riforma Mono Regular



LL Riforma Mono Italic

4.5 Points

is a (possibly complex) number that is not the root of any integer polynomial. Every real transcendental number must also be irrational, since a rational number is the root of an integer polynomial of degree one. The set of transcendental numbers is uncountably infinite. Since the polynomials with rational coef-icients are countable. and since each such polynomial has a finite number of zeroes, the algebraic numbers must ALSO BE COUNTABLE, HOWEVER. CANTOR'S DIAGONAL ARGUMENT PROVES THAT THE REAL NUMBERS (AND THEREFORE ALSO THE COM-PLEX NUMBERS) ARE UNCOUNTABLE.

A transcendental number

Since the real numbers are the union of algebraic and transcendental numbers, it is impossible for both subsets to be countable. This makes the transcendental numbers uncountable. A transcendental number is a number that is not the root of any integer polvnomial. Everv real transcendental number must also be irrational. since a rational number is the root of an integer polynomial of dearee one.The set of transcendental numbers is uncount-ABLY INFINITE, SINCE THE POLY-NOMIALS WITH RATIONAL COEFFI-CTENTS ARE COUNTABLE AND SINCE EACH SUCH POLYNOMIAL HAS A FINITE NUMBER OF ZEROES.

the algebraic numbers must also be countable. However, Cantor's diagonal argument proves that the real numbers (and therefore also the complex numbers) are uncountable. Since the real numbers are the union of algebraic and transcendental numbers. it is impossible for both subsets to be countable. This makes the transcendental numbers uncountable. No rational number is transcendental and all real transcendental numbers are irrational. The TRRATTONAL NUMBERS CONTAIN ALL THE REAL TRANSCENDENTAL NUM-RERS AND A SUBSET OF THE ALGE-BRATC NUMBERS, INCLUDING THE QUADRATIC IRRATIONALS AND

6 Points

A natural number can be used to express the size of a finite set; more precisely, a cardinal number is a measure for the size of a set. which is even suitable for infinite sets. This concept of "size" relies on maps between sets, such that two sets have the same size. exactly if there exists a bijection between them. The set of natural numbers itself, and any bijective image of it. is said to be count-ABLY INFINITE AND TO HAVE CARDINAL-ITY ALEPH-NULL. NATURAL NUMBERS ARE ALSO USED AS LINGUISTIC ORDINAL NUMBERS: "FIRST", "SECOND",

"third", and so forth. This way they can be assigned to the elements of a totally ordered finite set, and also to the elements of any well-ordered countably infinite set. This assignment can be generalized to general well-orderings with a cardinality beyond countability. to vield the ordinal numbers. An ordinal number may also be used to describe the notion of "size" for a well-ordered set, in a sense DIFFERENT FROM CARDINALITY: IF THERE IS AN ORDER ISOMORPHISM (MORE THAN A BIJECTION) BETWEEN TWO WELL-ORDERED SETS. THEY HAVE THE SAME

7 Points

There are two standard methods for formally defining natural numbers. The first one, named for Giuseppe Peano, consists of an autonomous axiomatic theory called Peano arithmetic, based on few axioms called Peano axioms. The second definition is based on set theory. It defines the natural numbers as specific sets. More precisely, each natural number n is defined as an explicitly defined set, whose elements allow counting the elements of other sets, in the sense that the sentence "a set S has n elements" means that there exists a one to one correspondence between the two sets n and S. The sets used TO DEFINE NATURAL NUMBERS SATISFY PEANO AXIOMS. IT FOLLOWS THAT EVERY THEOREM THAT CAN BE STATED AND PROVED IN PEANO ARITH-METIC CAN ALSO BE PROVED IN SET THEORY. HOWEVER, THE TWO DEFI- 9 Points

Intuitively, the natural number n is the common property of all sets that have n elements. So, it seems natural to define n as an equivalence class under the relation "can be made in one to one correspondence". Unfortunately, this does not work in set theory, as such an equivalence class would not be a set. The standard solution is to define a particular set with n elements that will be called the natural number n. The following definition was first published by John von Neumann, although Levy attributes the idea to unpublished work of Zermelo in 1916. As this DEFINITION EXTENDS TO INFINITE SET AS A DEFINI-TION OF ORDINAL NUMBER, THE SETS CONSIDERED BELOW ARE SOMETIMES CALLED VON NEUMANN ORDINALS. THE DEFINITION PROCEEDS AS FOLLOWS: CALL THE

10.5 Points

It can be checked that the natural numbers satisfies the Peano axioms. With this definition, given a natural number n, the sentence "a set S has n elements" can be formally defined as "there exists a bijection from n to S. This formalizes the operation of counting the elements of S. Also, n≤m if and only if n is a subset of m. In other words, the set inclusion defines the usual total order on the natural numbers. This order is a well-order. It follows from the definition that each NATURAL NUMBER IS EQUAL TO THE SET OF ALL NATURAL NUMBERS LESS THAN IT. THIS DEFI-NITION. CAN BE EXTENDED TO THE VON NEUMANN

LL Riforma Mono Italic

12 Points (• The impetus to study complex numbers as a topic in itself first arose in the 16th century when algebraic solutions for the roots of cubic and quartic polynomials were discovered by Italian mathematicians (Niccolò Fontana Tartaglia and Gerolamo Cardano). It was soon realized (but proved much later)that these formulas, EVEN IF ONE WERE INTERESTED ONLY IN REAL SOLUTIONS, SOMETIMES REQUI-RED THE MANIPULATION OF SQUARE ROOTS OF NEGATIVE NUMBERS. IN FACT, IT WAS

16 Points

- 1. Additive inverse
- 2. Asymptotic
- 3. Calculus
- 4. Complex, Conjugate
- 5. De Moivre's theory
- 6. Fondamental
- 7. Generated function
- 8. Geometric Root
- 9. HOOK-LENGTH
- **10.IMAGINARY UNIT**
- 11.INEQUALITY

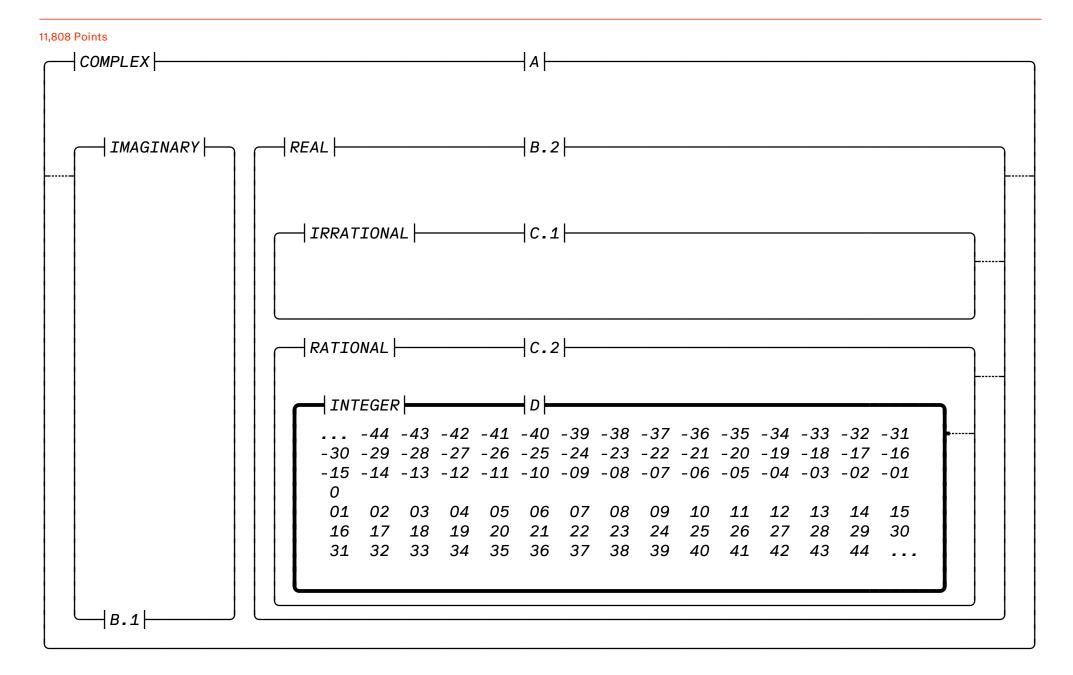
20 Points

Mandelbrot Fractal Null set (Empty ∅) Prime Factorization Theorem Proofing Power Series d₀=a₀/b₀ Quadratic equations Repeating decimal RHOMBUS QUADRILATERAL STATISTICAL MEDIAN

32 Points - SS01 Diagonal Endings

Uncoutable Set Unique Factor Factorization Wilson prime Whole Unit ZERO-CROSSING

LL Riforma Mono Italic



LL Riforma Mono Bold

4.5 Points

the Egyptians around 1000 BC; the Vedic "Shulba Sutras" ("The rules of chords") in c. 600 BC include what may be the first "use" of irrational numbers. The concept of irrationality was implicitly accepted by early Indian mathematicians such as Manava (c. 750-690 BC), who was aware that the square roots of certain numbers. such as 2 and 61. could not be exactly determathematicians led by Pytha-GORAS ALSO REALIZED THAT THE SQUARE ROOT OF 2 IS IRRATIONAL. THE MIDDLE AGES BROUGHT ABOUT THE ACCEPTANCE OF ZERO, NEGA-TIVE NUMBERS. INTEGERS. AND

Simple fractions were used by

fractional numbers, first by Indian and Chinese mathematicians, and then by Arabic mathematicians. who were also the first to treat irrational numbers as algebraic objects (the latter being made possible by the development of algebra). Arabic mathematicians merged the and irrational numbers in this concepts of "number" and "magnitude" into a more general idea Descartes introduced the term of real numbers. The Equptian mathematician Abū Kāmil Shuiā ibn Aslam (c. 850-930) was mined. Around 500 BC, the Greek the first to accept irrational In the 18th and 19th centuries. numbers as solutions to quad-RATIC EQUATIONS, OR AS COEFFI-CIENTS IN AN EQUATION (OFTEN IN THE FORM OF SQUARE ROOTS. CUBE ROOTS AND FOURTH ROOTS). IN EUROPE. SUCH NUMBERS.

not commensurable with the numerical unit, were called irrational or surd ("deaf"). In the 16th century. Simon Stevin created the basis for modern decimal notation. and insisted that there is no difference between rational regard. In the 17th century. "real" to describe roots of a polynomial. distinguishing them from "imaginary" ones. there was much work on irra-TIONAL AND TRANSCENDENTAL NUM-BERS. LAMBERT (1761) GAVE A FLAWED PROOF THAT IL CANNOT BE RATIONAL: LEGENDRE (1794) COMPLETED THE PROOFAND SHOWED

6 Points

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance. duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus, in particular by their role in the CLASSICAL DEFINITIONS OF LIMITS. CONTINUITY AND DERIVATIVES. THE SET OF REAL NUMBERS IS DENOTED R AND IS SOMETIMES CALLED "THE REALS".

The adjective real, used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of -1. The real numbers include the rational numbers, such as the integer -5 and the fraction 4/3. The rest of the real numbers are called irrational numbers. Some irrational numbers are the root of a polynomial with integer coefficients. such AS THE SQUARE ROOT √2=1.414...: THESE ARE ALGEBRAIC NUMBERS. THERE ARE ALSO REAL NUMBERS WHICH ARE NOT SUCH AS N=3.1415...: THESE ARE

7 Points

Conversely, analytic geometry is the association of points on lines (especially axis lines) to real numbers such that geometric displacements are proportional to differences between corresponding numbers. The informal descriptions above of the real numbers are not sufficient for ensuring the correctness of proofs of theorems involving real numbers. The realization that a better definition was needed, and the elaboration of such a definition was a major development of 19th-century mathematics and is the foundation of real analysis, the study of real functions and real-valued sequences. A current axio-MATIC DEFINITION IS THAT REAL NUMBERS FORM THE UNIQUE (UP TO AN ISOMORPHISM) DEDEKIND-COMPLETE ORDERED FIELD. OTHER COMMON DEFINITIONS OF REAL NUMBERS INCLUDE EQUIVALENCE CLASSES OF

9 Points

Real numbers are completely characterized by their fundamental properties that can be summarized by saving that they form an ordered field that is Dedekind complete. Here, "completely characterized" means that there is a unique isomorphism between any two Dedekind complete ordered fields, and thus that their elements have exactly the same properties. This implies that one can manipulate real numbers and compute with them. without knowing how they can be defined; this is what mathematicians and physicists did during several centuries before the first formal defini-TIONS WERE PROVIDED IN THE SECOND HALF OF THE **19TH CENTURY. SEE CONSTRUCTION OF THE REAL NUMBERS** FOR DETAILS ABOUT THESE FORMAL DEFINITIONS AND THE PROOF OF THEIR EQUIVALENCE. THE REAL NUMBERS

10.5 Points -SS02

> Titling f, i, j, t

The real numbers form a metric space: the distance between x and y is defined as the absolute value |x-y|. By virtue of being a totally ordered set, they also carry an order topology; the topology arising from the metric and the one arising from the order are identical, but vield different presentations for the topology in the order topology as ordered intervals, in the metric topology as epsilon-balls. The reals form a contractible connected and simply connected). SEPARABLE AND COMPLETE METRIC SPACE OF HAUSDORFF DIMENSION 1. THE REAL NUMBERS ARE LOCALLY COMPACT BUT NOT COMPACT.

II Riforma Mono Bold

12 Points ♦ Wessel's memoir appeared in the Proceedings of the Copenhagen Academy but went largely unnoticed. In 1806 Jean-Robert Argand independently issued a pamphlet on complex numbers and provided a rigorous proof of the fundamental theorem of algebra. Carl Friedrich Gauss had earlier published an essentially topological PROOF OF THE THEOREM IN 1797 BUT EXPRESSED HIS DOUBTS AT THE TIME ABOUT "THE TRUE METAPHYSICS OF THE SQUARE ROOT OF -1". IT WAS NOT UNTIL

16 Points

Argand diagram Argument Analytic function Conjugate pair Contour integral Exponential Essential singularity Fractal Suite GAUSSIAN INTEGERS GEOMETRIC IMAGINARY UNIT (I)

20 Points

- I. Isomorphism
- M. Magnitude Möbius Function Modulus
- N. Normal form
- 0. Orthogonal
- P. Phase angles PRTNCTPAL VALUE
- Q. QUATERNON

32 Points - SS03 Stacked Fractions

Quotient **Riemann** sphere Reciprocal $\begin{bmatrix} 5 = \frac{5}{1} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{1}{5} \end{bmatrix}$

LL Riforma Mono Bold



LL Riforma Mono Bold Italic

4.5 Points

and computers cannot operate on arbitrary real numbers, because finite computers cannot directly store infinitely many digits or other infinite representations. Nor do they usually even operate on arbitrary definable real numbers. which are inconvenient to manipulate. Instead. computers typically work with finite-precision approximations called floatingpoint numbers, a representation similar to scientific NOTATION. THE ACHIEVABLE PRECISION IS LIMITED BY THE DATA STORAGE SPACE ALLO-CATED FOR EACH NUMBER. WHETHER AS FIXED-POINT. FLOATING-

Electronic calculators

point, or arbitrary-precision numbers, or some other representation. Most scientific computation uses binary floating-point arithmetic. often a 64-bit representation with around 16 decimal digits of precision. Real numbers satisfy the usual rules of arithmetic. but floating-point numbers do not. The field of numerical analysis studies the stability and accuracy of numerical algorithms implemented with approximate arithmetic.Alternatelv. computer ALGEBRA SYSTEMS CAN OPERATE ON IRRATIONAL QUANTITIES EXAC-TLY BY MANTPULATING SYMBOLIC FORMULAS FOR THEM RATHER THAN THEIR RATIONAL OR DECIMAL

approximation. But exact and symbolic arithmetic also have limitations: for instance. they are computationally more expensive: it is not in general possible to determine whether two symbolic expressions are equal (the constant problem): and arithmetic operations can cause exponential explosion in the size of representation of a single number (for instance. squaring a rational number roughly doubles the number of digits in its numerator and DENOMINATOR, AND SQUARING A POLYNOMIAL ROUGHLY DOUBLES TTS NUMBER OF TERMS), OVER-WHELMING FINITE COMPUTER STOR-AGE. A REAL NUMBER IS CALLED

6 Points

Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572. The concept had appeared in print earlier, such as in work by Gerolamo Cardano. At the time, imaginary numbers and negative num-BERS WERE POORLY UNDERSTOOD AND WERE REGARDED BY SOME AS FICTITIOUS OR USELESS, MUCH AS ZERO ONCE WAS. MANY OTHER MATHEMATICIANS WERE

slow to adopt the use of imaginary numbers, including René Descartes, who wrote about them in his La Géométrie in which he coined the term imaginary and meant it to be derogatory. The use of imaginary numbers was not widely accepted until the work of Leonhard Euler (1707-1783) and Carl Friedrich Gauss (1777-1855). The geometric significance of complex numbers as points IN A PLANE WAS FIRST DESCRIBED BY CASPAR WESSEL (1745-1818). IN 1843, WILLIAM ROWAN HAMILTON EXTENDED THE IDEA OF AN AXIS OF IMAGINARY

7 Points

Geometrically, imaginary numbers are found on the vertical axis of the complex number plane, which allows them to be presented perpendicular to the real axis. One way of viewing imaginary numbers is to consider a standard number line positively increasing in magnitude to the right and negatively increasing in magnitude to the left. At 0 on the x-axis, a y-axis can be drawn with "positive" direction going up; "positive" imaginary numbers then increase in magnitude upwards, and "negative" imaginary numbers increase in magnitude down-WARDS. THIS VERTICAL AXIS IS OFTEN CALLED THE "IMAGINARY AXIS" AND IS DENOTED IR, I, OR I. IN THIS REPRESENTATION, MUL-TIPLICATION BY I CORRESPONDS TO A COUNTERCLOCKWISE ROTATION OF 90 DEGREES ABOUT THE ORIGIN, WHICH IS A QUARTER OF A CIRCLE. 9 Points

In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix. privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable. meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could BE USED TO EXPRESS THE LENGTHS OF BOTH OF THE TWO GIVEN SEGMENTS AS INTEGER MULTIPLES OF ITSELF. AMONG IRRATIONAL NUMBERS ARE THE RATIO I OF A CIRCLE'S CIRCUMFERENCE TO

10.5 Points

The next step was taken by Eudoxus of Cnidus, who formalized a new theory of proportion that took into account commensurable as well as incommensurable quantities. Central to his idea was the distinction between magnitude and number. A magnitude"... was not a number but stood for entities such as line segments, angles, areas, volumes, and time which could vary, as we would say, continuously. Magnitudes were opposed to numbers, which jumped from one value TO ANOTHER, AS FROM 4 TO 5". NUMBERS ARE COMPOSED OF SOME SMALLEST, INDIVISI-BLE UNIT. WHEREAS MAGNITUDES ARE INFI-

LL Riforma Mono Bold Italic

12 Points
In Unlike the real numbers, there is no natural ordering of the complex numbers. In particular, there is no linear ordering on the complex numbers that is compatible with addition and multiplication. Hence, the complex numbers do not have the structure of an ordered field. One explanation for this is THAT EVERY NON-TRIVIAL SUM OF SQUARES IN AN ORDERED FIELD IS NONZERO, AND I²+1²=0 IS A NONTRIVIAL SUM OF SQUARES. THUS, COMPLEX NUMBERS

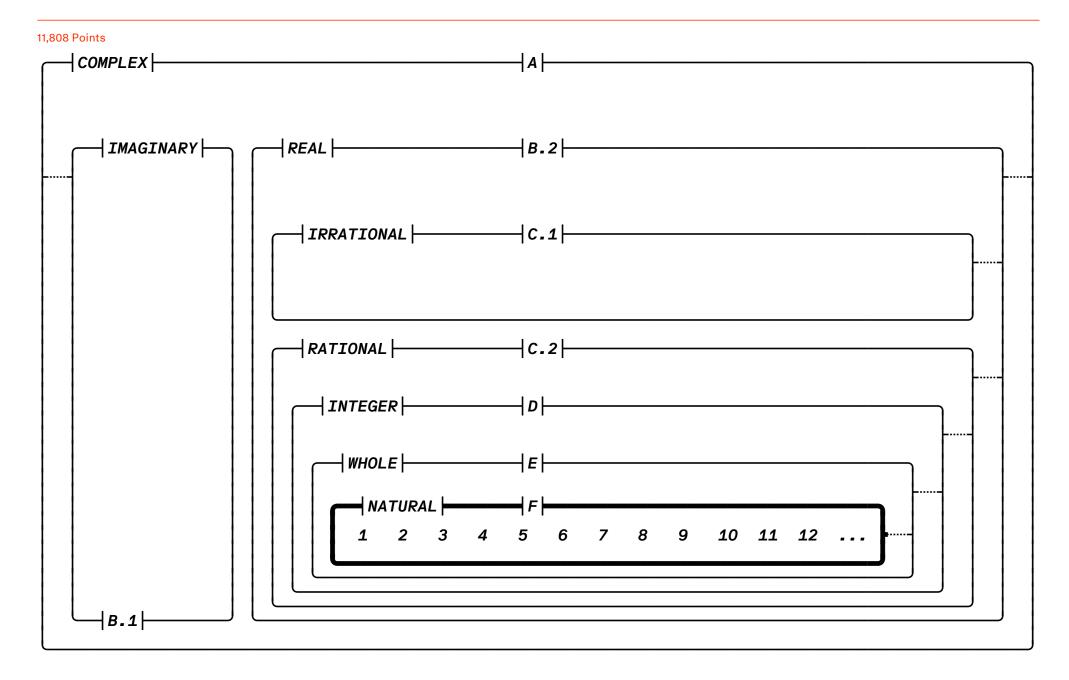
16 Points

Associative property Average coefficient (Base 10) X System Commutative property ±Divisibile Equal groups, Exponent Factorization Fraction 1/(2²)=¹/₄ GEOMETRIC MEAN HINDU-ARABIC SYSTEM INFINITE INTEGRERS 20 Points

- Inradius $\frac{1}{4}a(\sqrt{3}-1)$
 - Identity element
 - Logistic growth
- 0 Multiplicative
- Nth term, Odd number
- Octal Periodic
- Power of Ten
- PROPERTY OF ZERO
- PYTHAGOREAN

Residue(f,a) Squaring = x^2 Tetrahedron Unit Matrice Venn, Vinculum $V_1 = (\sqrt[8]{9}, 0, -\frac{1}{3})$

LL Riforma Mono Bold Italic



Uprig	ght Axis	Italic Axis
- 300 - 400	A New Topology A New Topology	- 300 A New Topology A New Topology A New Topology - 400 A New Topology A New Topology
- 700	A New Topology A New Topology	A New Topology - 700 A New Topology

LL Riforma Mono – Default vs. Aternates

108 Points Riforma GJØ£}firt

108 Points Bold - SS01 Alternate Set

Bold Default

Riforma GJØ£}firt

80 Points Regular - SS01 Diagonal Endings

80 Points Light - Default

A Number Classification

40 Points - SS03

> Titling f, i, j, t

40 Points – Default Cmplx a+ib Imaginary Irrational Rational Integer(0) NATURAL

Cmplx a+ib Imaginary Irrational Rational Integer(0) NATURAL

11 Riforma Mono – Default vs. Aternates

Light

14 Points

Regular

- SS02

Titling

f, i, j, t

10 Points Light - Default

There are two standard methods for formally defining natural numbers. The first one, named for Giuseppe Peano, consists of an autonomous axiomatic theory called Peano arithmetic. based on few axioms called Peano axioms. The second definition is based ON SET THEORY. IT DEFINES THE NATURAL NUMBERS AS SPECIFIC SETS. MORE PRECISELY.

14 Points Regular - Default

The sets used to define natu ral numbers satisfy Peano axioms. It follows that every theorem that can be stated and proved in Peano arithmetic can also be proved in set theory. However, the two definitions are not equivalent. as there are theorems that can BE STATED IN TERMS OF PEANO ARITHMETIC AND PROVED IN SET THEORY, WHICH ARE NOT PROVABLE

18 Points Bold - Default

Infinitude of the primes and the divergence of the sum of the reciprocals of the **PRIMES** $\frac{1}{2} + \frac{1}{3}$...

10 Points There are two standard methods for formally defining natural numbers. The first one, - SS01 named for Giuseppe Peano, consists of Diagonal an autonomous axiomatic theory called Peano Endings arithmetic, based on few axioms called Peano axioms. The second definition is based ON SET THEORY. IT DEFINES THE NATURAL NUMBERS AS SPECIFIC SETS. MORE PRECISELY.

> The sets used to define natu ral numbers satisfy Peano axioms. It follows that every theorem that can be stated and proved in Peano arithmetic can also be proved in set theory. However, the two definitions are not equivalent. as there are theorems that can BE STATED IN TERMS OF PEANO ARITHMETIC AND PROVED IN SET THEORY, WHICH ARE NOT PROVABLE

18 Points Bold - SS03 Stacked Fractions Infinitude of the primes and the divergence of the sum of the reciprocals of the **PRIMES** $\frac{1}{2}$ + $\frac{1}{3}$...

Technical Information

Latin Afrikaans Albanian Asturian Asu Basque Bemba Bena Breton Catalan Chiga Colognian Cornish Croatian Czech	Koyraboro Senni Langi Latvian Lithuanian Lower Sorbian Luo Luxembourgish Luyia Machame Makhuwa-Meetto Makonde Malagasy Maltese Manx	Swedish Swiss German Tachelhit Taita Tasawaq Teso Turkish Upper Sorbian Uzbek Volapük Volapük Vunjo Walser Welsh Western Frisian	Open Type Features	aaltAccess All AlternatesornmOrnamentscaltContextual AlternatessaltStylistic AlternatescaseCase-Sensitive Formsss01Stylistic Set 1ccmpGlyph Composition /ss02Stylistic Set 2Decompositionss03Stylistic Set 3dligDiscretionary Ligaturesss17Stylistic Set 17dnomDenominatorsss18Stylistic Set 18fracFractionsss19Stylistic Set 19ligaStandard Ligaturesss20Stylistic Set 20loclLocalized FormssubsSubscriptnaltAlternate Annotation FormssupsSuperscriptnumrNumeratorszeroSlashed ZeroordnOrdinalsStandard Zero					
Danish Dutch	Meru Morisyen	Yoruba Zarma	Codepage	Please refer to the Technical Document					
Embu English Esperanto Estonian Faroese Filipino Finnish French Friulian Galician Ganda German Gusii Hungarian Icelandic Igbo Inari Sami Indonesian Irish Italian Jola-Fonyi Kabuverdianu Kabyle Kalaallisut Kalenjin Kamba Kikuyu	North Ndebele Northern Sami Norwegian Bokmål Norwegian Nynorsk Nyankole Oromo Polish Portuguese Prussian Quechua Romanian Romansh Rombo Rundi Rwa Samburu Sango Sangu Scottish Gaelic Sena Serbian Shambala Shona Slovak Slovenian Soga Somali Spanish Swahili	Zulu	Codepage	No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mecanical, photocopying, record- ing or otherwise, without the prior written consent of the publisher. This publication and the informa- tion herein is furnished AS IS, is subject to change without notice, and should not be constured as a commitment by Lineto GmbH.	curacies, kind ory) with , and ad all war- fitness d non- rights. ised in ademarks				