\u003C/clipPath>\u003C/defs>\u003Ctitle>SVGpourCircular\u003C/title>\u003Crect class=\"cls-2\" width=\"1448.72\" height=\"828.86\"/>\u003Cpolygon points=\"766.65 242.95 794.68 242.95 794.68 238.24 772.64 238.24 794.42 211.49 794.42 206.62 767.16 206.62 767.16 211.28 788.33 211.28 766.65 237.93 766.65 242.95\"/>\u003Cpolygon points=\"664.93 242.95 669.95 242.95 669.95 213.33 689.58 242.95 694.81 242.95 694.81 206.62 689.78 206.62 689.78 234.5 671.64 206.62 664.93 206.62 664.93 242.95\"/>\u003Crect x=\"725.94\" y=\"132.93\" width=\"5.12\" height=\"36.33\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M890.45,111.74c0,7,4.2,11.58,11.33,11.58,6.77,0,10.92-5.28,10.92-11.63V86.22h-5V112c0,4.2-2.26,6.61-5.94,6.61s-6.25-2.15-6.25-7v-3.43l-5,1.13Z\"/>\u003Cpath d=\"M963,171.42c11,0,16.71-7.64,16.71-16.86a10.75,10.75,0,0,0-.05-1.28H959.88v4.51h14.66c-.67,5-4.82,9.07-11.58,9.07s-13.12-4.77-13.12-14.4,6.35-14.3,13.12-14.3c5.84,0,9.94,2.92,11.48,8.51l4.66-1.59c-1.84-7-8-11.53-16.14-11.53-9.12,0-18.24,6.77-18.24,18.91s9.12,19,18.24,19\"/>\u003Cpath d=\"M861,141.18c-.82-3.95-4.1-9-12.3-9-6.71,0-12,5.12-12,10.81,0,5.43,3.69,8.81,8.87,9.94l5.18,1.13c3.64.77,5.43,3,5.43,5.64,0,3.18-2.46,5.79-7.48,5.79a8.26,8.26,0,0,1-8.71-7.79l-4.82,1.54C835.85,164.4,840,170,848.77,170c7.74,0,12.56-5.12,12.56-10.76,0-5.07-3.38-8.87-9.43-10.2l-5.43-1.18c-3.07-.67-4.66-2.66-4.66-5.28,0-3.38,2.92-6,7-6a7.37,7.37,0,0,1,7.69,6.2Z\"/>\u003Cpath d=\"M1014.5,200.55c0-9.48,6.35-14.3,13.12-14.3s13.12,4.82,13.12,14.3a15.1,15.1,0,0,1-3.23,9.84l-6.35-7.17-3.49,3,6.3,7.07a13,13,0,0,1-6.35,1.59c-6.76,0-13.12-4.87-13.12-14.35m-5.12,0c0,12.15,9.12,19,18.24,19a18.4,18.4,0,0,0,9.53-2.61l4.41,4.87,3.43-3-4.25-4.77a18.81,18.81,0,0,0,5.12-13.43c0-12.15-9.12-18.91-18.24-18.91s-18.24,6.77-18.24,18.91\"/>\u003Cpath d=\"M912,221.46c9.22,0,17.37-6.2,17.37-18.09s-8-18.24-17.27-18.24H899.36v36.33ZM904.38,217V189.58h7.53c6.71,0,12.25,4.61,12.25,13.79S918.53,217,911.82,217Z\"/>\u003Cpath d=\"M980.19,274.42c7.38,0,13.07-4.61,13.07-13.17V237.32h-5V261.1c0,5.54-2.92,8.66-8,8.66s-8.1-3.13-8.1-8.66V237.32h-5v23.93c0,8.56,5.69,13.17,13.07,13.17\"/>\u003C/g>\u003Cpolygon points=\"913.25 311.87 902.28 281.99 896.95 281.99 910.64 318.32 915.61 318.32 929.6 281.99 924.32 281.99 913.25 311.87\"/>\u003Cpolygon points=\"1066.5 318.26 1057.18 289.51 1051.9 289.51 1042.78 317.95 1034.78 289.51 1029.61 289.51 1040.11 325.85 1045.13 325.85 1054.51 296.38 1063.99 325.85 1069.17 325.85 1079.52 289.51 1074.35 289.51 1066.5 318.26\"/>\u003Cpolygon points=\"975.47 359.07 975.47 343.8 990.95 343.8 990.95 339.08 975.47 339.08 975.47 327.4 992.53 327.4 992.53 322.73 970.45 322.73 970.45 359.07 975.47 359.07\"/>\u003Cpolygon points=\"1056.96 399.81 1056.96 395.1 1039.79 395.1 1039.79 363.48 1034.77 363.48 1034.77 399.81 1056.96 399.81\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M997,440.47V428h7.69c4.1,0,6.87,2.46,6.87,6.3s-2.77,6.15-6.87,6.15Zm13.73,19.37h5.84l-8.66-15.22c5.48-1,8.81-5.07,8.81-10.3,0-6-4.25-10.81-11.12-10.81H991.9v36.33H997V445h5.43Z\"/>\u003Cpath d=\"M496,193.71c-6.76,0-13.12-4.87-13.12-14.35s6.35-14.3,13.12-14.3,13.12,4.82,13.12,14.3-6.35,14.35-13.12,14.35m0,4.61c9.12,0,18.24-6.82,18.24-19S505.1,160.45,496,160.45s-18.24,6.77-18.24,18.91,9.12,19,18.24,19m-9.22-16.6H505.2V177H486.75Z\"/>\u003C/g>\u003Cpath d=\"M559.92,106.82h21V102h-21ZM556.79,91h27.26V86.22H556.79Zm0,31.57h27.26v-4.71H556.79Z\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M540,272.56h14.19v-5.28a14.46,14.46,0,0,1-9.58-13.94c0-8.46,6-13.22,13.12-13.22s13.12,4.77,13.12,13.22a14.46,14.46,0,0,1-9.58,13.94v5.28h14.19v-4.71h-7.53a16.72,16.72,0,0,0,8-14.76c0-11.38-8.81-17.58-18.24-17.58s-18.24,6.2-18.24,17.58c0,6.51,2.87,11.84,8,14.76H540Z\"/>\u003C/g>\u003Cpolygon points=\"407.6 272.56 435.63 272.56 435.63 267.84 413.39 267.84 427.07 253.6 427.07 253.24 414.51 240.89 435.37 240.89 435.37 236.22 408.11 236.22 408.11 241.35 420.71 253.6 407.6 267.53 407.6 272.56\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M493.4,354.79h5.12v-7.94c8.92-.26,15.22-4.87,15.22-15.63V318.46h-5v12.61c0,7.69-3.84,10.92-10.25,11.22V318.46H493.4v23.83c-6.41-.31-10.25-3.48-10.25-11.22V318.46h-5v12.76c0,10.76,6.25,15.37,15.22,15.63Z\"/>\u003C/g>\u003Cpath d=\"M437.1,405.82l11.17,26.55H426.18ZM420.44,437h33.67v-3.59L440.17,400.7h-5.79l-13.94,32.75Z\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M886,484.73c8.35,0,14.09-4.87,16-11.68l-4.46-1.64c-1.49,5-5.38,8.71-11.58,8.71-6.61,0-12.91-4.87-12.91-14.35s6.3-14.3,12.91-14.3c5.94,0,9.94,3.07,11.33,8.56l4.66-1.64c-1.84-7-7.69-11.53-16-11.53-9,0-18,6.77-18,18.91s8.66,19,18,19\"/>\u003C/g>\u003Cpolygon points=\"773.99 330.96 780.35 330.96 765.02 310.82 780.14 294.63 773.53 294.63 756.52 313.33 756.52 294.63 751.49 294.63 751.49 330.96 756.52 330.96 756.52 320 761.69 314.46 773.99 330.96\"/>\u003Cpolygon points=\"684.93 330.96 689.9 330.96 689.9 302.68 702.2 330.96 706.82 330.96 719.22 302.68 719.22 330.96 724.19 330.96 724.19 294.63 717.48 294.63 704.56 324.2 691.75 294.63 684.93 294.63 684.93 330.96\"/>\u003Cpolygon points=\"831.7 321.29 831.7 316.63 802.38 316.63 802.38 321.29 814.53 321.29 814.53 352.96 819.55 352.96 819.55 321.29 831.7 321.29\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M645.08,349.12c-6.76,0-13.12-4.87-13.12-14.35s6.35-14.3,13.12-14.3,13.12,4.82,13.12,14.3-6.35,14.35-13.12,14.35m0,4.61c9.12,0,18.24-6.82,18.24-19s-9.12-18.91-18.24-18.91-18.24,6.77-18.24,18.91,9.12,19,18.24,19\"/>\u003C/g>\u003Cpath d=\"M659.4,376.44l6.3,16.24H653.2ZM642.23,407.5h5.38l3.84-10.15h16.09l3.95,10.15h5.43l-14.45-36.33h-5.79Z\"/>\u003Cpolygon points=\"785.3 407.5 790.32 407.5 790.32 391.36 808.88 391.36 808.88 407.5 813.9 407.5 813.9 371.17 808.88 371.17 808.88 386.69 790.32 386.69 790.32 371.17 785.3 371.17 785.3 407.5\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M674.2,441.59V430.11h6c4.15,0,6.66,2.26,6.66,5.69s-2.41,5.79-6.46,5.79Zm0,16V445.89h7.17c4.41,0,6.61,2.46,6.61,5.94s-2.77,5.79-6.82,5.79Zm-5,4.41h12.71c6.66,0,11.22-4.15,11.22-9.89a8.74,8.74,0,0,0-6.56-8.76,8.07,8.07,0,0,0,5.43-7.84c0-5.74-4-9.84-11-9.84H669.18Z\"/>\u003Cpath d=\"M770.27,442.66V430.21h7.28c4.36,0,7,2.46,7,6.3s-2.66,6.15-7,6.15Zm-5,19.37h5V447.17h8.2c6.71,0,11.22-4.56,11.22-10.71s-4.51-10.76-11.22-10.76H765.25Z\"/>\u003C/g>\u003Cpolygon points=\"713.23 442.56 719.13 442.56 728.5 428.37 737.68 442.56 743.67 442.56 731.48 424.37 743.83 406.23 737.88 406.23 728.56 420.48 719.38 406.23 713.34 406.23 725.63 424.37 713.23 442.56\"/>\u003Cpolygon points=\"726.02 386.76 731.04 386.76 731.04 371.24 743.85 350.43 738.11 350.43 728.68 366.62 719.25 350.43 713.21 350.43 726.02 371.24 726.02 386.76\"/>\u003Cpolygon points=\"718.43 498.36 740.52 498.36 740.52 493.7 723.46 493.7 723.46 482.58 738.93 482.58 738.93 477.87 723.46 477.87 723.46 466.69 740.52 466.69 740.52 462.03 718.43 462.03 718.43 498.36\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M556.84,389.31c0-7.69,5.38-10.51,11-10.92v21.88c-5.38-.31-11-3.07-11-11m27.16,0c0,7.89-5.64,10.66-11,11V378.39c5.64.41,11,3.23,11,10.92m-11,19.22v-3.84c7.74-.36,16.14-4.87,16.14-15.37,0-10.25-8.1-14.76-16.14-15.27v-3.89h-5.12V374c-8,.51-16.14,5-16.14,15.27,0,10.51,8.4,15,16.14,15.37v3.84Z\"/>\u003C/g>\u003Cpolygon points=\"571.65 483.96 576.68 483.96 576.68 452.29 595.23 452.29 595.23 483.96 600.25 483.96 600.25 447.63 571.65 447.63 571.65 483.96\"/>\u003Cpolygon points=\"638.39 534.35 643.42 534.35 643.42 502.68 660.48 502.68 660.48 498.02 638.39 498.02 638.39 534.35\"/>\u003Cpolygon points=\"503.06 517.58 508.44 517.58 519.21 486.22 530.27 517.58 535.71 517.58 522.28 481.25 516.49 481.25 503.06 517.58\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M850.86,582c0-3.69,2.61-6.71,7.43-6.71h6.77V588.6h-6.61c-4.25,0-7.58-2.56-7.58-6.61m-.31,25.11,8.61-14h5.89v14h5V570.77h-12.5c-6.92,0-11.84,4.77-11.84,11.38a10.43,10.43,0,0,0,8.15,10.3l-9.17,14.66Z\"/>\u003Cpath d=\"M778.41,594.93h5V558.6h-5v15.94c-1.38,1.64-4.66,3-8.4,3-4,0-8.3-1.64-8.3-8.87V558.6h-5v10.61c0,9.94,6.3,13,13,13a14.9,14.9,0,0,0,8.71-2.66Z\"/>\u003Cpath d=\"M938.4,603.26c-6.51,0-12.61-4.87-12.61-14.35s6.1-14.3,12.61-14.3S951,579.43,951,588.91s-6.1,14.35-12.61,14.35m0,4.61c8.87,0,17.73-6.71,17.73-19S947.27,570,938.4,570c-8.2,0-16.35,5.79-17.53,16.3h-5.59V570.77h-5V607.1h5V591h5.53c.92,10.86,9.22,16.91,17.58,16.91\"/>\u003C/g>\u003Cpolygon points=\"812.67 730.02 818.87 730.02 831.53 713.21 835.73 717.72 835.73 730.02 840.75 730.02 840.75 717.72 844.9 713.21 857.46 730.02 863.81 730.02 848.49 709.88 863.61 693.69 857 693.69 840.75 711.57 840.75 693.69 835.73 693.69 835.73 711.57 819.48 693.69 813.13 693.69 828.2 709.83 812.67 730.02\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M877.21,654.87h6.71c5,0,7.64,3.23,7.64,7s-3,6.82-7.43,6.82h-6.92Zm7.74,18.29c6.82,0,11.74-5,11.74-11.38,0-7.23-5.07-11.43-12-11.43h-7.48V636.83h-5v36.33Zm21.47-36.33H901.3v36.33h5.12Z\"/>\u003Cpath d=\"M765.87,750.74V738h7c5.18,0,7.33,3,7.33,6.46s-2.72,6.3-7.33,6.3Zm-5,4.51H773.5c7.07,0,11.84-4.77,11.84-10.86,0-6.92-4.72-10.92-11.89-10.92h-7.58v-9.89h16.35v-4.66H760.84Z\"/>\u003Cpath d=\"M682.47,679.6h6.71c5,0,7.64,3.23,7.64,7s-3,6.82-7.43,6.82h-6.92Zm7.74,18.29c6.82,0,11.74-5,11.74-11.38,0-7.23-5.07-11.43-12-11.43h-7.48V661.56h-5v36.33Z\"/>\u003Cpath d=\"M766,679.6h6.71c5,0,7.64,3.23,7.64,7s-3,6.82-7.43,6.82H766Zm7.74,18.29c6.82,0,11.74-5,11.74-11.38,0-7.23-5.07-11.43-12-11.43H766V661.56H752v4.66h9v31.67Z\"/>\u003Cpath d=\"M725.66,605.81a3,3,0,1,0-3,3,3,3,0,0,0,3-3m11.84,0a3,3,0,1,0-3,3,3,3,0,0,0,3-3m1.74,42v-4.66H722.17V632h15.48v-4.71H722.17V616.11h17.07v-4.66H717.15v36.33Z\"/>\u003Cpath d=\"M812.6,609.14c5.79,0,7.84-3.69,7.94-6.61h-4.36a3.43,3.43,0,0,1-3.59,3.33,3.56,3.56,0,0,1-3.84-3.33H804.4c.15,3.07,2.46,6.61,8.2,6.61m-14.71,38.64h5.53l18-29v29h5V611.45h-5.53l-18,29v-29h-5Z\"/>\u003C/g>\u003Cpolygon points=\"629.25 647.78 634.78 647.78 652.82 618.83 652.82 647.78 657.84 647.78 657.84 611.45 652.31 611.45 634.27 640.4 634.27 611.45 629.25 611.45 629.25 647.78\"/>\u003Cg class=\"cls-3\">\u003Cpath d=\"M685.48,595.7c9.38,0,17.63-6.56,17.63-19s-7.84-18.91-17.42-18.91c-7.53,0-14.81,4.15-16.81,11l4.51,1.64c1.43-4.46,5.89-8,12.09-8,6,0,11.68,3.95,12.4,12H678.51v4.66h19.37c-.72,8-6.35,12-12.4,12-6.56,0-10.92-3.79-12.4-8.76l-4.41,1.79c1.95,6.82,8.2,11.58,16.81,11.58\"/>\u003Cpath d=\"M614.82,597.06a8.57,8.57,0,0,0-6.92-8.66,8.61,8.61,0,0,0,5.94-8.61c0-4.82-3.64-9.79-11.84-9.79-7.84,0-12.3,5.28-12.71,9.63l4.56,1.23c.46-3.28,2.87-6.66,8-6.66,3.89,0,6.92,2.41,6.92,6s-2.2,6.1-7,6.1h-4.41V591h4.36c6.1,0,7.94,3,7.94,6.1,0,3-2.1,6.25-7.79,6.25-5.23,0-8.25-3.48-8.61-7.48l-4.92,1.44c.67,5,5,10.61,13.53,10.61s12.86-5.12,12.86-10.81\"/>\u003C/g>\u003Cpolygon points=\"549.01 673.17 588.98 673.17 588.98 636.83 583.96 636.83 583.96 668.5 571.5 668.5 571.5 636.83 566.48 636.83 566.48 668.5 554.03 668.5 554.03 636.83 549.01 636.83 549.01 673.17\"/>\u003Cpolygon points=\"642.09 735.73 646.8 735.73 646.8 723.38 641.78 723.38 641.78 691.71 636.75 691.71 636.75 723.38 624.3 723.38 624.3 691.71 619.28 691.71 619.28 723.38 606.83 723.38 606.83 691.71 601.8 691.71 601.8 728.05 642.09 728.05 642.09 735.73\"/>\u003Cpath d=\"M520.08,602.44l9.43-25.88,9.28,25.88Zm-9,12.35h4.71V607.1h27.47v7.69H548V602.44h-3.79l-11.74-31.67h-5.74L515,602.44h-3.89Z\"/>\u003Cg class=\"cls-3\">\u003Ccircle class=\"cls-4\" cx=\"603.19\" cy=\"307.45\" r=\"251.85\"/>\u003Ccircle class=\"cls-4\" cx=\"853.89\" cy=\"307.45\" r=\"251.85\"/>\u003Ccircle class=\"cls-4\" cx=\"728.54\" cy=\"526.98\" r=\"251.85\"/>\u003C/g>\u003Cpolygon points=\"704.27 762.93 708.99 762.93 708.99 750.58 703.97 750.58 703.97 718.91 698.94 718.91 698.94 750.58 682.39 750.58 682.39 718.91 677.37 718.91 677.37 755.25 704.27 755.25 704.27 762.93\"/>\u003C/svg>",{"type":12008,"files":12071,"width":141,"height":12017,"target":12018,"boxLabel":41,"background":41,"sizingMode":12019,"noInversion":7,"mobileHeight":41,"boxPaddingHor":41,"boxPaddingVer":41,"fullPageWidth":7},[12072],{"key":12073,"url":12074,"name":12075,"size":12076,"type":3975,"width":12015,"height":12016},"245bd8a1-9254-4aa0-a4c9-afd308b0ce32.jpg","https://assets.lineto.com/245bd8a1-9254-4aa0-a4c9-afd308b0ce32.jpg","07.jpg",1471524,{"type":12008,"files":12078,"width":141,"height":12017,"target":12018,"boxLabel":41,"background":41,"sizingMode":12019,"noInversion":7,"mobileHeight":41,"boxPaddingHor":41,"boxPaddingVer":41,"fullPageWidth":7},[12079],{"key":12080,"url":12081,"name":12082,"size":12083,"type":3975,"width":12015,"height":12016},"c4c68868-9b2c-4744-97cb-a57bbbb95742.jpg","https://assets.lineto.com/c4c68868-9b2c-4744-97cb-a57bbbb95742.jpg","06.jpg",1108792,{"type":12008,"files":12085,"width":141,"height":12017,"target":12018,"boxLabel":41,"background":41,"sizingMode":12019,"noInversion":7,"mobileHeight":41,"boxPaddingHor":41,"boxPaddingVer":41,"fullPageWidth":7},[12086],{"key":12087,"url":12088,"name":12089,"size":12090,"type":3975,"width":12015,"height":12016},"ddf0665b-51d2-4afa-87e8-8b9287f25ff5.jpg","https://assets.lineto.com/ddf0665b-51d2-4afa-87e8-8b9287f25ff5.jpg","05.jpg",1424693,{"type":12008,"files":12092,"width":141,"height":12017,"target":12018,"boxLabel":41,"background":41,"sizingMode":12019,"noInversion":7,"mobileHeight":41,"boxPaddingHor":41,"boxPaddingVer":41,"fullPageWidth":7},[12093],{"key":12094,"url":12095,"name":12096,"size":12097,"type":3975,"width":12015,"height":12016},"b9f2b416-a653-414d-8356-b5e36cfc26f8.jpg","https://assets.lineto.com/b9f2b416-a653-414d-8356-b5e36cfc26f8.jpg","02b.jpg",4862989,{"type":12008,"files":12099,"width":9,"height":12017,"target":12018,"boxLabel":12107,"background":41,"sizingMode":12019,"noInversion":7,"mobileHeight":41,"boxPaddingHor":41,"boxPaddingVer":41,"fullPageWidth":7},[12100],{"key":12101,"url":12102,"name":12103,"size":12104,"type":12050,"width":12105,"height":12106},"7a3472cc-644e-4038-8e3a-66edb4ad9c75.gif","https://assets.lineto.com/7a3472cc-644e-4038-8e3a-66edb4ad9c75.gif","A.gif",235892,2400,971,"LL Circular Cyrillic, Greek, Arabic, Hebrew",{"type":12109,"color":5564,"width":9,"amount":192,"height":4129,"target":11801,"background":41,"noInversion":7,"mobileHeight":4129,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":773,"openTypeFeatures":12110,"lineHeightScaling":41,"lineHeightDecrement":41},"listing",[],{"type":12112,"color":41,"width":9,"height":1850,"target":12018,"fitText":10,"editable":7,"hideCaret":7,"sequences":12113,"background":41,"noInversion":7,"showOctoBar":7,"mobileHeight":41,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"hideSelection":7,"letterTracking":41,"fontSizeScaling":2285,"openTypeFeatures":12130,"lineHeightScaling":41,"lineHeightDecrement":41},"typewriter",[12114],{"steps":12115,"boxLabel":12129},[12116,12119,12122,12127],{"rate":166,"text":12117,"type":12118,"pause":73},"kayak","write",{"rate":166,"text":12120,"type":12121,"index":73,"pause":73,"reversed":7},"a","select-text",{"type":12123,"pause":73,"value":10,"features":12124},"change-features",[6814,12125,12126],"kern","clig",{"type":12128,"pause":166},"pause","Alternates",[],{"type":12132,"color":5564,"width":9,"amount":100,"height":4129,"target":11801,"reverse":7,"background":41,"noInversion":7,"mobileHeight":4129,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":3810,"openTypeFeatures":12133,"lineHeightScaling":41,"lineHeightDecrement":41},"columns-gradient",[],{"type":12135,"color":5564,"width":9,"height":1850,"target":11801,"background":41,"noInversion":7,"mobileHeight":292,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"openTypeFeatures":12136},"glyph-compare",[],[12138,12141,12144,12148,12151,12154,12157,12160],{"type":12139,"color":41,"width":9,"height":1850,"target":12018,"background":41,"noInversion":7,"mobileHeight":1591,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":5035,"showAlternates":7,"fontSizeScaling":773,"openTypeFeatures":12140,"showFontCutNames":10,"lineHeightScaling":83,"lineHeightDecrement":41},"weights",[],{"type":12139,"color":41,"width":9,"height":12017,"target":12142,"background":41,"noInversion":7,"mobileHeight":1591,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"showAlternates":7,"fontSizeScaling":212,"openTypeFeatures":12143,"showFontCutNames":10,"lineHeightScaling":83,"lineHeightDecrement":41},"mobile",[],{"type":12145,"color":5564,"width":594,"amount":773,"height":4276,"target":11801,"randomize":7,"background":41,"noInversion":7,"mobileHeight":41,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":12146,"openTypeFeatures":12147,"lineHeightScaling":41,"lineHeightDecrement":41},"ordered-list",5.8,[],{"type":12149,"color":5564,"width":385,"amount":147,"height":4276,"target":12018,"background":41,"noInversion":7,"mobileHeight":303,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":73,"openTypeFeatures":12150,"italicsPercentage":4276,"lineHeightScaling":41,"lineHeightDecrement":41},"columns",[],{"type":12149,"color":5564,"width":4276,"amount":73,"height":4276,"target":12018,"background":41,"noInversion":7,"mobileHeight":303,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":12152,"openTypeFeatures":12153,"italicsPercentage":103,"lineHeightScaling":41,"lineHeightDecrement":41},1.93,[],{"type":12149,"color":5564,"width":4276,"amount":147,"height":4276,"target":12018,"background":41,"noInversion":7,"mobileHeight":303,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":12155,"openTypeFeatures":12156,"italicsPercentage":103,"lineHeightScaling":41,"lineHeightDecrement":41},0.1,[],{"type":12149,"color":41,"width":9,"amount":73,"height":4276,"target":12142,"background":41,"noInversion":7,"mobileHeight":303,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":12158,"openTypeFeatures":12159,"italicsPercentage":103,"lineHeightScaling":41,"lineHeightDecrement":41},2.5,[],{"type":12149,"color":41,"width":9,"amount":73,"height":4276,"target":12142,"background":41,"noInversion":7,"mobileHeight":303,"variableAxes":41,"boxPaddingHor":41,"boxPaddingVer":41,"letterTracking":41,"fontSizeScaling":41,"openTypeFeatures":12161,"italicsPercentage":103,"lineHeightScaling":41,"lineHeightDecrement":41},[],[],{"id":219,"name":12164,"names":12165,"words":12186,"quotes":12201,"texts":12224,"rightToLeft":7},"Circular B",[12166,12167,12168,12169,12170,12171,12172,12173,12174,12175,12176,12177,12178,12179,12180,12181,12182,12183,12184,12185],"detartrated","racecar","madam","murdrum","deified","malayalam","evitative","rotator","regallager","reliefpfeiler","rentner","neben","sometemos","accavallavacca","orezzerò","acidica","emirime","ylähäly","isässäsi","skovoks",[12187,12188,12189,12190,12191,12192,12193,12194,12195,12196,12197,12198,12199,12200],"Kayak ","Alula","Repaper","Sagas","Rotator","Sérés","Refer","DVD","Evitative","Xanax","Madam","Level","Civic","Aoxomoxoa",[12202,12203,12204,12205,12206,12207,12208,12209,12210,12211,12212,12213,12214,12215,12216,12217,12218,12219,12220,12221,12222,12223],"The sower Arepo leads with his hand the plough.","Desserts, I stressed!","Campus motto: Bottoms up Mac.","Cigar? Toss it in a can. It is so tragic.","Anne, I vote more cars race Rome to Vienna.","A dog! A panic in a pagoda!","A Santa dog lived as a devil God at NASA.","Wonder if Sununu’s fired now.","Ew! Eat a ewe?","He won! Killer! Rad Darrell I know, eh?","In words, drown I.","Caser vite cet ivre sac.","L’âme sûre ruse mal.","The sower Arepo holds the wheels with effort.","Tu l’as cramé Marc? Salut!","Un art luxueux ultra nu!","Ti gram skovoks, Margit.","Kas, kisaaja ajaa siksak!","Naamat hohtamaan!","Ai! Miksi akku tukka iski, Mia?","Autore, ero tua","Anita la gorda lagartona no traga la droga latina.",[12225,12226,12227,12228,12229],"No philosopher better epitomizes circular reasoning, nor more fittingly embodies the logical fallacy of circulus in probando, than G. W. F. Hegel, because he loves talking about circles and his points often go in circles. This essay isn’t about Hegel’s endearing oral delivery, about which plenty has been said since the man himself was alive. Rather, this is an attempt to think philosophically about circles and rethink so-called Hegelian circularity. Why we would even bother thinking about circles is on account of their “eternal” symbolism within philosophy and theory—the fact that the circle always stands for something, ever the symbol of this or that thing you don’t really like. Invariably, that something is Hegel, on the grounds that he typifies the circularity of thought. For example, Ludwig Feuerbach writes: “The circle is the symbol and the coat of arms of speculative philosophy, of the thought that rests on itself. Hegel’s philosophy, too, as is well known, is a circle of circles.” This is indeed one of those long-standing clichés about Hegel. So it’s no surprise that Louis Althusser—whose anti-Hegelianism can be forgiven in the knowledge that he’s really not a deep reader of Hegel—draws a circle around himself in order to step out of it, striding from ideology to science: The whole history of the “theory of knowledge” in Western philosophy from the famous “Cartesian circle” to the circle of the Hegelian or Husserlian teleology of Reason, shows us that this “problem of knowledge” is a closed space, i.e., a vicious circle (the vicious circle of the mirror relation of ideological recognition). That’s a lot of circles, a lot of symbols. What do they mean? What do they really “show”? These symbolic circles mean too much and not enough: call something a circle and the point about it is somehow immediately clear, but wait, how is something that’s not actually a circle like a circle or identical to a circle? Such symbolic circles mean what you want them to mean, which is exactly why all symbols are hopelessly bound up with the proverbial problem of meaning—tokens of the human need to line things up, to know where things go, ever since we first took soil for filth and polluted it accordingly. All the more reason, then, to think dialectically about our problem in an essay that both defends and extends Hegel’s thinking on this question of circularity and figures. Our problem is this: Hegel rates figures below concepts but he needn’t always do so. In his mind, figures are just a bunch of numbers and lines annoyingly uncommitted to either Thought or Being. He also dislikes figures because they aren’t language, or are a lesser language. Hegel has his reasons for these positions. But those reasons may not be good enough, judging by the way he seems to equivocate about figures. Sometimes figures are so perfect as to figurate the very significance of his philosophy (and that’s no small feat!). And sometimes they are pretenders to proper conceptuality, conceptual thinking by other means. Hegel is all over the place on this question, as we’ll soon see. But if one applies even a modicum of mathematical wit to the figures Hegel does offer us—and most of them are circles, with triangles as a close runner-up—then we discover some rather interesting spaces in which dialectics might wander. No philosopher better epitomizes circular reasoning, nor more fittingly embodies the logical fallacy of circulus in probando, than G. W. F. Hegel, because he loves talking about circles and his points often go in circles. This essay isn’t about Hegel’s endearing oral delivery, about which plenty has been said since the man himself was alive. Rather, this is an attempt to think philosophically about circles and rethink so-called Hegelian circularity. Why we would even bother thinking about circles is on account of their “eternal” symbolism within philosophy and theory—the fact that the circle always stands for something, ever the symbol of this or that thing you don’t really like. Invariably, that something is Hegel, on the grounds that he typifies the circularity of thought. For example, Ludwig Feuerbach writes: “The circle is the symbol and the coat of arms of speculative philosophy, of the thought that rests on itself. Hegel’s philosophy, too, as is well known, is a circle of circles.” This is indeed one of those long-standing clichés about Hegel. So it’s no surprise that Louis Althusser—whose anti-Hegelianism can be forgiven in the knowledge that he’s really not a deep reader of Hegel—draws a circle around himself in order to step out of it, striding from ideology to science: The whole history of the “theory of knowledge” in Western philosophy from the famous “Cartesian circle” to the circle of the Hegelian or Husserlian teleology of Reason, shows us that this “problem of knowledge” is a closed space, i.e., a vicious circle (the vicious circle of the mirror relation of ideological recognition). That’s a lot of circles, a lot of symbols. What do they mean? What do they really “show”? These symbolic circles mean too much and not enough: call something a circle and the point about it is somehow immediately clear, but wait, how is something that’s not actually a circle like a circle or identical to a circle? Such symbolic circles mean what you want them to mean, which is exactly why all symbols are hopelessly bound up with the proverbial problem of meaning—tokens of the human need to line things up, to know where things go, ever since we first took soil for filth and polluted it accordingly. All the more reason, then, to think dialectically about our problem in an essay that both defends and extends Hegel’s thinking on this question of circularity and figures. Our problem is this: Hegel rates figures below concepts but he needn’t always do so. In his mind, figures are just a bunch of numbers and lines annoyingly uncommitted to either Thought or Being. He also dislikes figures because they aren’t language, or are a lesser language. Hegel has his reasons for these positions. But those reasons may not be good enough, judging by the way he seems to equivocate about figures. Sometimes figures are so perfect as to figurate the very significance of his philosophy (and that’s no small feat!). And sometimes they are pretenders to proper conceptuality, conceptual thinking by other means. Hegel is all over the place on this question, as we’ll soon see. But if one applies even a modicum of mathematical wit to the figures Hegel does offer us—and most of them are circles, with triangles as a close runner-up—then we discover some rather interesting spaces in which dialectics might wander. No philosopher better epitomizes circular reasoning, nor more fittingly embodies the logical fallacy of circulus in probando, than G. W. F. Hegel, because he loves talking about circles and his points often go in circles. This essay isn’t about Hegel’s endearing oral delivery, about which plenty has been said since the man himself was alive. Rather, this is an attempt to think philosophically about circles and rethink so-called Hegelian circularity. Why we would even bother thinking about circles is on account of their “eternal” symbolism within philosophy and theory—the fact that the circle always stands for something, ever the symbol of this or that thing you don’t really like. Invariably, that something is Hegel, on the grounds that he typifies the circularity of thought. For example, Ludwig Feuerbach writes: “The circle is the symbol and the coat of arms of speculative philosophy, of the thought that rests on itself. Hegel’s philosophy, too, as is well known, is a circle of circles.” This is indeed one of those long-standing clichés about Hegel. So it’s no surprise that Louis Althusser—whose anti-Hegelianism can be forgiven in the knowledge that he’s really not a deep reader of Hegel—draws a circle around himself in order to step out of it, striding from ideology to science: The whole history of the “theory of knowledge” in Western philosophy from the famous “Cartesian circle” to the circle of the Hegelian or Husserlian teleology of Reason, shows us that this “problem of knowledge” is a closed space, i.e., a vicious circle (the vicious circle of the mirror relation of ideological recognition).","The universe. It’s the only home we’ve ever known. Thanks to its intrinsic physical laws, the known constants of nature, and the heavy-metal-spewing fireballs known as supernovae we are little tiny beings held fast to a spinning ball of rock in a distant corner of space and time. Doesn’t it seem a little rude not to know much about the universe itself? For instance, if we could look at it from outside, what would we see? A vast blackness? A sea of bubbles? Snow globe? Rat maze? A marble in the hands of a larger-dimensional aliens or some other prog rock album cover? As it turns out, the answer is both simpler and weirder than all those options. The shape of the universe is a question we love to guess at as a species and make up all kinds of nonsense. Hindu texts describe the universe as a cosmic egg, the Jains believed it was human-shaped. The Greek Stoics saw the universe as a single island floating in an otherwise infinite void, while Aristotle believed it was made up of a finite series of concentric spheres, or perhaps it’s simply “turtles all the way down”. Thanks to the mathematical genius of Einstein, cosmologists can actually test out the validity of various models that describe the universe’s shape, turtles, mazes, and otherwise. There are three main flavors that scientists consider: positively curved, negatively curved, and flat. We know it exists in at least four dimensions, so any of the shapes we are about to describe are bordering on Lovecraftian madness geometry, so fire up your madness abacus. Ya! Ya! Cthulhu ftagen. A positively curved universe would look somewhat like a four-dimensional sphere. This type of universe would be finite in space, but with no discernible edge. In fact, two distant particles travelling in two straight lines would actually intersect before ending up back where they started. You can try this at home. Grab a balloon and draw a straight line with a sharpie. Your line eventually meets its starting point. A second line starting on the opposite side of the balloon will do the same thing, and it will cross your first line before meeting itself again. This type of universe, conveniently easy to imagine in three dimensions, would only arise if the cosmos contained a certain, large amount of energy. To be positively curved, or closed, the universe would first have to stop expanding – something that would only happen if the cosmos housed enough energy to give gravity the leading edge. Present cosmological observations suggest that the universe should expand forever. So, for now, we’re tossing out the easy to imagine scenario. It’s a reasonable question to wonder what the shape of the Universe is. Is it a sphere? A torus? Is it open or closed, or flat? And what does that all mean anyway? A negatively curved universe would look like a four-dimensional saddle. Open, without boundaries in space or time. It would contain too little energy to ever stop expanding. Here two particles traveling on straight paths would never meet. In fact, they would continuously diverge, getting farther and farther away from each other as infinite time spiraled on. If the universe is found to contain a Goldilocks-specific, critical amount of energy, teetering perilously between the extremes, its expansion will halt after an infinite amount of time, This type of universe is called a flat universe. Particles in a flat cosmos continue on their merry way in parallel straight paths, never to meet, but never to diverge either. Sphere, saddle, flat plane. Those are pretty easily to picture. There are other options too – like a soccer ball, a doughnut, or a trumpet. A soccer ball would look much like a spherical universe, but one with a very particular signature – a sort of hall of mirrors imprinted on the cosmic microwave background. The doughnut is technically a flat universe, but one that is connected in multiple places. Some scientists believe that large warm and cool spots in the CMB could actually be evidence for this kind of tasty topology. Lastly, we come to the trumpet. This is another way to visualize a negatively curved cosmos: like a saddle curled into a long tube, with one very flared end and one very narrow end. Someone in the narrow end would find their cosmos to be so cramped, it only had two dimensions. Meanwhile, someone else in the flared end could only travel so far before they found themselves inexplicably turned around and flying the other way. So which is it? Is our universe an orange or a bagel? Is it Pringles? A cheese slice? Brass or woodwind? Scientists have not yet ruled out the more wacky, negatively curved suggestions, such as the saddle or the trumpet. ","Le modèle architectural qui symbolise l’avènement des prisons modernes est le «panoptique». Inventée à la fin du XVIIIe siècle par le philosophe anglais Jeremy Bentham (1748-1832), cette «maison d’inspection» n’est pas exclusivement réservée aux détenus: dans Panopticon, un livre paru en 1791, le réformateur britannique estime qu’elle peut également s’appliquer à d’autres lieux de «surveillance» – manufactures, hôpitaux ou écoles. Il s’inspire des travaux de son frère Samuel, un ingénieur qui a imaginé, quelques années plus tôt, un atelier industriel de ce type en Russie. Le principe du panoptique est simple: une tour centrale permet aux geôliers de surveiller, sans être vus, tous les faits et gestes des prisonniers, enfermés en cellules dans un bâtiment en anneau encerclant la tour. Le philosophe libéral, qui a été proclamé «citoyen d’honneur» par la Révolution française, y voit un immense progrès: la morale sera «réformée», la santé «préservée», l’industrie «revigorée», l’instruction «diffusée», les charges publiques «allégées», l’économie «fortifiée». «Le nœud gordien des lois sur les pauvres non pas tranché mais dénoué – tout cela par une simple idée architecturale», écrit-il dans son livre. Dans Surveiller et punir, paru en 1975, Michel Foucault estime que cette « visibilité organisée entièrement autour d’un regard dominateur et surveillant » est au cœur du modèle disciplinaire moderne. «Le vrai effet du Panopticon, c’est d’être tel que, même lorsqu’il n’y a personne, l’individu dans sa cellule, non seulement se croie, mais se sache observé, qu’il ait l’expérience constante d’être dans un état de visibilité pour le regard.» « Pas besoin d’armes, de violences physiques, de contraintes matérielles. Mais un regard qui surveille et que chacun, en le sentant peser sur lui, finira par intérioriser au point de s’observer lui-même : chacun, ainsi, exercera cette surveillance sur et contre lui-même. » La « maison d’inspection » de Bentham n’a jamais vraiment été réalisée telle quelle, mais le panoptisme a inspiré l’architecture pénitentiaire du XIXe siècle. « Dans les années 1840, la peur de la criminalité organisée conduit un certain nombre d’hommes politiques et de spécialistes à appeler de leurs vœux une prison strictement punitive qui dissuaderait le malfaiteur de récidiver, écrit l’historien Ivan Jablonka sur le site L’Histoire par l’image (histoire-image.org). C’est alors qu’on songe à appliquer en France les solutions préconisées par Bentham dans son Panopticon. Celles-ci avaient déjà inspiré les architectes des prisons britanniques construites à la fin du XVIIIe siècle, ainsi que les promoteurs de la prison modèle de Philadelphie. » Bâtie en 1836 par l’architecte Louis-Hippolyte Le Bas, la prison de la Petite-Roquette, à Paris, est fondée sur le principe du panoptique de Bentham : la tour centrale de cette maison de rééducation pour enfants « permet une surveillance de tous les instants dans les six galeries qui en rayonnent et où donnent les cellules », résume l’historien. A la Petite-Roquette comme ailleurs, cette « machine à punir » qui isole le détenu est un échec. « Les seuls établissements construits sur ce modèle, à Paris, à Rennes ou à Angers, outre qu’ils n’ont jamais reçu qu’une minorité de prisonniers, ont été marqués par l’insalubrité, les violences et les nombreux cas de suicide ou de folie », constate Ivan Jablonka. Plutôt que le panoptique, c’est le plan rayonnant qui s’impose, en France, au XIXe siècle. Dans une circulaire diffusée en 1841, le ministre de l’intérieur impose l’isolement cellulaire et propose deux solutions : le plan circulaire ou le plan rayonnant. « C’est ce dernier modèle qui sera adopté par les départements », constate l’architecte Christian Demonchy dans Gouverner, enfermer, un livre sur les prisons coordonné par Philippe Artières et Pierre Lascoumes (Presses de Sciences Po, 2004). Le modèle est conçu en étoile : les architectes dessinent un long couloir bordé de cellules sur trois niveaux, ils y ajoutent un vide central bordé de coursives et installent quatre ou cinq bâtiments en plan rayonnant avec, au centre, un carrefour pour la salle d’inspection. Pour Christian Demonchy, ce système qui a perduré jusqu’à nos jours n’a aucun projet social. « Toute la fonctionnalité [de la prison] se concentre dans le service de garde. » « Cette maison d’arrêt est la seule institution où il n’est rien demandé à l’individu sinon d’y rester, en attente d’une décision qui l’en fera sortir. La notion d’amendement est hors de propos. Il n’y est d’ailleurs prévu aucun traitement pénal. (...) Dans ce modèle de prison, le détenu est délaissé par le pouvoir dans une salle d’attente où il est censé conserver son intégrité. Il n’intéresse pas l’administration en tant qu’individu à disciplinariser ou amender. Il ne l’intéresse ni en tant qu’infracteur ni en tant que délinquant, mais seulement en tant que détenu qui doit le rester. » Le modèle architectural qui symbolise l’avènement des prisons modernes est le « panoptique ». Inventée à la fin du XVIIIe siècle par le philosophe anglais Jeremy Bentham (1748-1832), cette « maison d’inspection » n’est pas exclusivement réservée aux détenus : dans Panopticon, un livre paru en 1791, le réformateur britannique estime qu’elle peut également s’appliquer à d’autres lieux de « surveillance » – manufactures, hôpitaux ou écoles. Il s’inspire des travaux de son frère Samuel, un ingénieur qui a imaginé, quelques années plus tôt, un atelier industriel de ce type en Russie. Le principe du panoptique est simple : une tour centrale permet aux geôliers de surveiller, sans être vus, tous les faits et gestes des prisonniers, enfermés en cellules dans un bâtiment en anneau encerclant la tour. Le philosophe libéral, qui a été proclamé « citoyen d’honneur » par la Révolution française, y voit un immense progrès : la morale sera « réformée », la santé « préservée », l’industrie « revigorée », l’instruction « diffusée », les charges publiques « allégées », l’économie « fortifiée ». « Le nœud gordien des lois sur les pauvres non pas tranché mais dénoué – tout cela par une simple idée architecturale », écrit-il dans son livre. Dans Surveiller et punir, paru en 1975, Michel Foucault estime que cette « visibilité organisée entièrement autour d’un regard dominateur et surveillant » est au cœur du modèle disciplinaire moderne. « Le vrai effet du Panopticon, c’est d’être tel que, même lorsqu’il n’y a personne, l’individu dans sa cellule, non seulement se croie, mais se sache observé, qu’il ait l’expérience constante d’être dans un état de visibilité pour le regard. » « Pas besoin d’armes, de violences physiques, de contraintes matérielles. Mais un regard qui surveille et que chacun, en le sentant peser sur lui, finira par intérioriser au point de s’observer lui-même : chacun, ainsi, exercera cette surveillance sur et contre lui-même. » La « maison d’inspection » de Bentham n’a jamais vraiment été réalisée telle quelle, mais le panoptisme a inspiré l’architecture pénitentiaire du XIXe siècle. « Dans les années 1840, la peur de la criminalité organisée conduit un certain nombre d’hommes politiques et de spécialistes à appeler de leurs vœux une prison strictement punitive qui dissuaderait le malfaiteur de récidiver, écrit l’historien Ivan Jablonka sur le site L’Histoire par l’image (histoire-image.org). C’est alors qu’on songe à appliquer en France les solutions préconisées par Bentham dans son Panopticon. Celles-ci avaient déjà inspiré les architectes des prisons britanniques construites à la fin du XVIIIe siècle, ainsi que les promoteurs de la prison modèle de Philadelphie. » Bâtie en 1836 par l’architecte Louis-Hippolyte Le Bas, la prison de la Petite-Roquette, à Paris, est fondée sur le principe du panoptique de Bentham : la tour centrale de cette maison de rééducation pour enfants « permet une surveillance de tous les instants dans les six galeries qui en rayonnent et où donnent les cellules », résume l’historien.","The Sumerians watched the Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, and Saturn), primarily for omens. They did not try to understand the motions physically. They did, however, notice the circular track of the Sun’s annual path across the sky and knew that it took about 360 days to complete one year’s circuit. Consequently, they divided the circular path into 360 degrees to track each day’s passage of the Sun’s whole journey. This probably happened about 2400 BC. That’s how we got a 360 degree circle. Around 1500 BC, Egyptians divided the day into 24 hours, though the hours varied with the seasons originally. Greek astronomers made the hours equal. About 300 to 100 BC, the Babylonians subdivided the hour into base-60 fractions: 60 minutes in an hour and 60 seconds in a minute. The base 60 of their number system lives on in our time and angle divisions. An 100-degree circle makes sense for base 10 people like ourselves. But the base-60 Babylonians came up with 360 degrees and we cling to their ways-4,400 years later. In 1936, a tablet was excavated some 200 miles from Babylon. Here one should make the interjection that the Sumerians were first to make one of man’s greatest inventions, namely, writing; through written communication, knowledge could be passed from one person to others, and from one generation to the next and future ones. They impressed their cuneiform (wedge-shaped) script on soft clay tablets with a stylus, and the tablets were then hardened in the sun. The mentioned tablet, whose translation was partially published only in 1950, is devoted to various geometrical figures, and states that the ratio of the perimeter of a regular hexagon to the circumference of the circumscribed circle equals a number which in modern notation is given by 57÷60 + 36÷602 (the Babylonians used the sexagesimal system, i.e., their base was 60 rather than 10). The Babylonians knew, of course, that the perimeter of a hexagon is exactly equal to six times the radius of the circumscribed circle, in fact that was evidently the reason why they chose to divide the circle into 360 degrees (and we are still burdened with that figure to this day). The tablet, therefore, gives ... π = 25÷8 = 3.125.","The British philosopher, mathematician, and professor of logic, John Venn (1834–1923), introduced the Venn diagram in his paper, “On the Diagrammatic and Mechanical Representation of Prepositions and Reasonings,” which appeared in the Philosophical Magazine and Journal of Science in July of 1880. The simplest Venn diagrams consist of two or three intersecting closed curves, but he also gave a construction for Venn diagrams with any number of curves, where each successive curve is interweaved with previous curves, starting with the three-circle diagram. A. W. F. Edwards, Branko Grünbaum, Charles Lutwidge Dodgson (a.k.a. Lewis Carroll) developed extended implications of Venn diagrams. Simple Venn diagrams are used in the classroom to teach students logical organization of their thoughts. In 1881, Venn further elaborated on his original diagrams in Symbolic Logic(1881), and continued to improve his method for illustrating propositions by exclusive and inclusive circles. The use of geometrical representations to illustrate syllogistic logic did not originate with Venn; Gottfried Leibnizused them as well. Venn became critical of the methods used in the nineteenth century diagrams of George Boole and Augustus de Morgan, and wrote Symbolic Logic mostly to present his own interpretations and corrections of Boole’s work. Venn’s diagrams became the most important part of his work, rather than his attempt to clarify what he believed to be inconsistencies and ambiguities in Boole’s logic. Venn diagrams typically have three sets. Venn was keen to find “symmetrical figures…elegant in themselves” representing higher numbers of sets, and he devised a four set diagram using ellipses. He also gave a construction for Venn diagrams with any number of curves, where each successive curve is interleaved with previous curves, starting with the three-circle diagram. Venn diagrams are often used by teachers in the classroom as a graphic organizer, a mechanism to help students compare and contrast two or three “sets” of ideas. Characteristics of each set of ideas are listed in each section of the diagram, with shared characteristics listed in the overlapping sections. Simple Venn diagrams are introduced to students as early as kindergarten, and are used to help students organize their thoughts before writing about them. ",{"credits":12231,"designers":12234,"description":12236},{"text":12232,"title":12233},"\u003Cp>Designed by Laurenz Brunner, first released by Lineto in 2013. Additional scripts were produced in close collaboration with Ilya Ruderman and Yury Ostromentsky (Cyrillic), Panos Haratzopoulos (Greek), Titus Nemeth (Arabic), Yanek Yontef (Hebrew), and Erin McLaughlin (Devanagari). Font engineering and mastering by Alphabet, Berlin.\u003C/p>","Credits",{"text":12235,"title":11824},"\u003Cp>After an apprenticeship in Switzerland and an internship in London, Laurenz Brunner (*1980) worked for Tate Modern under the art director James Goggin (2002/03). While studying at Central Saint Martins, he drew LL Akkurat, which was published in 2004. In the same year, Laurenz started to collaborate with Cornel Windlin on \u003Cem>TATE ETC.,\u003C/em> and he moved to Amsterdam to finish his BA studies at Gerrit Rietveld Academie (2005).\u003C/p>\u003Cp>Laurenz taught at the Rietveld academy for many years. In 2007, he debuted LL Bradford (released in 2018) when re-designing Dutch art serial \u003Cem>Casco Issues\u003C/em> with Julia Born. Early versions of LL Circular were tested in 2008. Based in Amsterdam, and later in Berlin, Laurenz created identities for Paris book fair Offprint (2010), the Arnhem Mode Biennale (2011, with Julia Born), and for Gavin Brown Enterprise, New York (2011, with Geoff Han).\u003C/p>\u003Cp>From 2015 to 2017, Laurenz worked for documenta GmbH as well as for documenta 14 (with Julia Born). A year later, he moved his studio to Zurich, where he launched Source Type, an office for typographic research and a platform for exchanges on graphic design. Between 2019 and 2024, he was responsible for the graphic identity and communication of Schauspielhaus Zurich.\u003C/p>",{"text":12237,"title":12238},"\u003Cp>LL Circular is a geometric sans-serif font family in eight weights. It is Laurenz Brunner’s second official release after the critically acclaimed, immensely popular LL Akkurat.\u003C/p>\u003Cp>LL Circular offers a fresh take on the genre of the geometric grotesk. This typographic current was prevalent in pre-war Germany, exemplified by Jakob Erbar’s Erbar Grotesk (1926–29), Paul Renner’s Futura (1927–28), Rudolf Koch's Kabel (1927–29) and Wilhelm Pischner’s Neuzeit Grotesk (1928–29). It later found prominent re-visitations in the 1970s with Herb Lubalin’s Avant Garde and in the 1980s with Adrian Frutiger’s Avenir.\u003C/p>\u003Cp>First begun in 2008, LL Circular’s design evolved from a purely geometric approach to a more complex formal conception by the time of its 2013 release. The result is a geometric sans serif that marries purity with warmth and strikes a balance between functionality, conceptual rigour, skilled workmanship and measured idiosyncrasy. With both unmistakeable character and near-universal appeal, this friendly font proved popular in editorial, advertising or branding contexts. It lends itself beautifully for use in headlines or for body copy.\u003C/p>\u003Cp>LL Circular is certainly one of the most successful and widely popular sans serif typefaces of the last ten years. Today, it is available for Cyrillic, Greek, Hebrew, Arabic, Vietnamese and Devanagari script, also as variable fonts. Additionally, there is an as yet unpublished Condensed counterpart, in both Latin and Cyrillic script, which is available by_request.\u003C/p>","LL Circular",{"383":12230},{"90":11998},{"69":12163},{"allowRouteUpdates":10,"customRouteHash":41,"consideredRouteHash":41},{"octoSubMenu":41,"isOctoOpen":7,"isOctoHidden":7,"isOctoBlurred":7,"isOctoScrolling":7,"isOctoMenuHidden":7,"isOctoBarOpen":7,"isOctoBarHidden":10,"isOctoBuddyOpen":10,"isOctoPadOpen":7,"isOctoGuiHidden":7,"hasOctoTabs":7,"hasOctoSounds":10,"menuLinks":41,"preventClose":7,"menuDirection":12244,"menuBackRouteName":41,"itemSpacing":41,"fontRatio":41,"animationCounter":41,"hasVisibleItems":7,"visibleSubMenuLines":103,"maxSubMenuLines":103,"scrollableLines":103,"scrollableOffset":103,"currentSubMenuComponent":41,"nextSubMenuComponent":41,"currentBuddyComponent":41,"nextBuddyComponent":41,"octoTabsComponent":41,"octoPadComponent":41,"currentBuddyItems":41,"octoBarGroup":41,"octoBarGroupCount":103,"activeSection":41,"activeSectionLock":103,"searchTerm":41,"searchResults":12245,"isSearchActive":7},"vertical",[]]